参数高效微调PEFT(二)快速入门P-Tuning、P-Tuning V2

2024-05-29 09:12

本文主要是介绍参数高效微调PEFT(二)快速入门P-Tuning、P-Tuning V2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参数高效微调PEFT(二)快速入门P-Tuning、P-Tuning V2

参数高效微调PEFT(一)快速入门BitFit、Prompt Tuning、Prefix Tuning

  • 今天,我们继续了解下来自清华大学发布的两种参数高效微调方法P-Tuning和P-Tuning v2。
  • 可以简单的将P-Tuning是认为针对Prompt Tuning的改进,P-Tuning v2认为是针对Prefix Tuning的改进。
  • 不过,P-Tuning是21年3月份发布的,而Prompt Tuning是21年4月发布的。

1 P-Tuning

1.1 P-Tuning概述

  • 论文链接:GPT Understands, Too (202103)

  • Prompt Tuning原理如下图所示:冻结主模型全部参数,在训练数据前加入一小段Prompt,只训练Prompt的表示层,即一个Embedding模块。论文实验表明,只要模型规模够大,简单加入 Prompt tokens 进行微调,就能取得很好的效果。

在这里插入图片描述

  • P Tuning原理如下图所示:在Prompt-Tuning的基础上,对Prompt部分进行进一步的编码计算,加速收敛。具体来说,PEFT中支持两种编码方式,一种是LSTM,一种是MLP。与Prompt-Tuning不同的是,Prompt的形式只有Soft Prompt。

在这里插入图片描述

  • P Tuning将Prompt转换为可以学习的Embedding层,并用MLP+LSTM的方式来对Prompt Embedding进行一层处理

    • 相比Prefix Tuning,P Tuning仅限于输入层,没有在每一层都加virtual token
    • 经过预训练的LM的词嵌入已经变得高度离散,如果随机初始化virtual token,容易优化到局部最优值,而这些virtual token理论是应该有相关关联的。因此,作者通过实验发现用一个prompt encoder来编码会收敛更快,效果更好。即用一个LSTM+MLP去编码这些virtual token以后,再输入到模型
    • 作者在实验中发现,相同参数规模,如果进行全参数微调,Bert的在NLU(自然语言理解)任务上的效果,超过GPT很多;但是在P-Tuning下,GPT可以取得超越Bert的效果。

    在这里插入图片描述

1.2 P-Tuning轻量微调bloom模型

1.2.1 peft中的P-Tuning

我们来看下peft\tuners\p_tuning.py中的内容:

  • 可以看到,peft支持两种编码方式,即MLP和LSTM。
# peft\tuners\p_tuning.py
class PromptEncoderReparameterizationType(str, enum.Enum):MLP = "MLP"LSTM = "LSTM"
  • P-Tuning在peft中默认的编码方式为MLP。
# peft\tuners\p_tuning.py
@dataclass
class PromptEncoderConfig(PromptLearningConfig):encoder_reparameterization_type: Union[str, PromptEncoderReparameterizationType] = field(default=PromptEncoderReparameterizationType.MLP,metadata={"help": "How to reparameterize the prompt encoder"},)encoder_hidden_size: int = field(default=None,metadata={"help": "The hidden size of the prompt encoder"},)encoder_num_layers: int = field(default=2,metadata={"help": "The number of layers of the prompt encoder"},)encoder_dropout: float = field(default=0.0,metadata={"help": "The dropout of the prompt encoder"},)def __post_init__(self):self.peft_type = PeftType.P_TUNING
  • 如下代码所示,经过LSTM或MLP去编码virtual token以后,再输入到模型。
class PromptEncoder(torch.nn.Module):"""Input shape: (`batch_size`, `total_virtual_tokens`)Output shape: (`batch_size`, `total_virtual_tokens`, `token_dim`)"""def __init__(self, config):super().__init__()self.token_dim = config.token_dimself.input_size = self.token_dimself.output_size = self.token_dimself.hidden_size = config.encoder_hidden_sizeself.total_virtual_tokens = config.num_virtual_tokens * config.num_transformer_submodulesself.encoder_type = config.encoder_reparameterization_type# embeddingself.embedding = torch.nn.Embedding(self.total_virtual_tokens, self.token_dim)if not config.inference_mode:if self.encoder_type == PromptEncoderReparameterizationType.LSTM:lstm_dropout = config.encoder_dropoutnum_layers = config.encoder_num_layers# LSTMself.lstm_head = torch.nn.LSTM(input_size=self.input_size,hidden_size=self.hidden_size,num_layers=num_layers,   # 深层LSTMdropout=lstm_dropout,   bidirectional=True,      # 双向batch_first=True,        # batch_size在第一维)self.mlp_head = torch.nn.Sequential(torch.nn.Linear(self.hidden_size * 2, self.hidden_size * 2),torch.nn.ReLU(),torch.nn.Linear(self.hidden_size * 2, self.output_size),)elif self.encoder_type == PromptEncoderReparameterizationType.MLP:encoder_num_layers_default = PromptEncoderConfig.encoder_num_layerslayers = [torch.nn.Linear(self.input_size, self.hidden_size),torch.nn.ReLU(),torch.nn.Linear(self.hidden_size, self.hidden_size),torch.nn.ReLU(),torch.nn.Linear(self.hidden_size, self.output_size),]self.mlp_head = torch.nn.Sequential(*layers)else:raise ValueError("Prompt encoder type not recognized. Please use one of MLP (recommended) or LSTM.")def forward(self, indices):# 1、先进行embeddinginput_embeds = self.embedding(indices)# 2、embedding后,再进行编码if self.encoder_type == PromptEncoderReparameterizationType.LSTM:output_embeds = self.mlp_head(self.lstm_head(input_embeds)[0])elif self.encoder_type == PromptEncoderReparameterizationType.MLP:output_embeds = self.mlp_head(input_embeds)else:raise ValueError("Prompt encoder type not recognized. Please use one of MLP (recommended) or LSTM.")return output_embeds
  • peft\peft_model.py中PeftModelForCausalLM代码如下,通过配置文件的类型来判断PEFT方法到底是PrefixTuning/PTuningV2,还是PromptTuning/PTuningV1。
    • 如果是Prompt Tuning/P-TuningV1,则将虚拟token的embedding直接concat到原始输入序列的前面,送入base model模型进行推理。
    • 如果是Prefix Tuning/P-TuningV2,需要给每一个transformer block的key和value添加虚拟token的embedding。
        # peft\peft_model.pyif peft_config.peft_type == PeftType.PREFIX_TUNING:#  如果为PREFIX_TUNING,需要给每一个transformer block的key和value添加虚拟token的embedding......else:# PromptTuning/PTuningV1 分支if inputs_embeds is None:# 计算prompt以外输入内容的embeddinginputs_embeds = self.word_embeddings(input_ids)# concat prompt labelsif labels is not None:prefix_labels = torch.full((batch_size, peft_config.num_virtual_tokens), -100).to(labels.device)kwargs["labels"] = torch.cat((prefix_labels, labels), dim=1)# prompt内容的embedding    prompts = self.get_prompt(batch_size=batch_size)prompts = prompts.to(inputs_embeds.dtype)# 将prompt embedding 和原始的embedding 一起送到base model进行推理计算inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1)return self.base_model(inputs_embeds=inputs_embeds, **kwargs)

1.2.2 轻量微调bloom模型

我们只需要在加载原模型后、配置训练器前加peft的代码即可。

from peft import PromptEncoderConfig, TaskType, get_peft_model, PromptEncoderReparameterizationTypeconfig = PromptEncoderConfig(task_type=TaskType.CAUSAL_LM, num_virtual_tokens=10,encoder_reparameterization_type=PromptEncoderReparameterizationType.MLP,encoder_dropout=0.1, encoder_num_layers=5, encoder_hidden_size=1024)model = get_peft_model(model, config)# 打印可训练参数信息
model.print_trainable_parameters()trainable params: 3,159,040 || all params: 348,928,000 || trainable%: 0.9053558327219369
  • 配置训练器、模型训练及推理和参数高效微调PEFT(一)快速入门BitFit、Prompt Tuning、Prefix Tuning中2.1一样。
  • 显存消耗情况:
(base) root@autodl-container-adbc11ae52-f2ebff02:~# nvidia-smi 
Tue May 28 15:15:53 2024       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.89.02    Driver Version: 525.89.02    CUDA Version: 12.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  On   | 00000000:B1:00.0 Off |                  N/A |
| 33%   59C    P2   168W / 250W |   2870MiB / 11264MiB |     45%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
+-----------------------------------------------------------------------------+

2 P-Tuning V2

Prompt Tuning和P-Tuning等方法存在两个主要的问题:

  • 第一,缺乏模型参数规模和任务通用性。

    • 缺乏规模通用性:Prompt Tuning论文中表明当模型规模超过100亿个参数时,提示优化可以与全量微调相媲美。但是对于那些较小的模型(从100M到1B),提示优化和全量微调的表现有很大差异,这大大限制了提示优化的适用性。
    • 缺乏任务普遍性:尽管Prompt Tuning和P-tuning在一些 NLU 基准测试中表现出优势,但对硬序列标记任务(即序列标注)的有效性尚未得到验证。
  • 第二,缺少深度提示优化。我们知道在Prompt Tuning和P-tuning中,只被插入transformer第一层的输入embedding序列中,在接下来的transformer层中,插入Prompt的位置的embedding是由之前的transformer层计算出来的。

    • 由于序列长度的限制,可调参数的数量是有限的。
    • 输入embedding对模型预测只有相对间接的影响。

考虑到这些问题,作者提出了P-Tuning v2。

2.1 P-Tuning V2概述

  • 论文地址:P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks(2110)
  • Prefix Tuning原理如下图所示:相较于Prompt-Tuning和P-tuning,Prefix-Tuning不再将Prompt加在输入的Embedding层,而是将其作为可学习的前缀,放置在Transformer模型中的每一层中,具体表现形式为past_key_values。

在这里插入图片描述

  • P-Tuning V2和Prefix Tuning的区别主要在于:移除重参数化的编码器,即没有MLP。我们之前分析Prefix Tuning源码时,也看到了在peft库中将P-Tuning V2和Prefix Tuning进行了集成:
# peft/tuners/prefix_tuning.py# Based on https://github.com/THUDM/P-tuning-v2/blob/main/model/prefix_encoder.py
# with some refactor
class PrefixEncoder(torch.nn.Module):def __init__(self, config):super().__init__()self.prefix_projection = config.prefix_projectiontoken_dim = config.token_dimnum_layers = config.num_layersencoder_hidden_size = config.encoder_hidden_sizenum_virtual_tokens = config.num_virtual_tokensif self.prefix_projection and not config.inference_mode:# Use a two-layer MLP to encode the prefix# Prefix Tuning 进行重新参数化编码(通过MLP)self.embedding = torch.nn.Embedding(num_virtual_tokens, token_dim)self.transform = torch.nn.Sequential(torch.nn.Linear(token_dim, encoder_hidden_size),torch.nn.Tanh(),torch.nn.Linear(encoder_hidden_size, num_layers * 2 * token_dim),)else:# P-Tuning v2 self.embedding = torch.nn.Embedding(num_virtual_tokens, num_layers * 2 * token_dim)def forward(self, prefix: torch.Tensor):if self.prefix_projection:# Prefix Tuning# 先进行Embedding 此时shape为:(batch_size, num_virtual_tokens)# 再进行重新参数化编码,此时shape为:(batch_size, num_virtual_tokens, 2*layers*hidden)prefix_tokens = self.embedding(prefix)past_key_values = self.transform(prefix_tokens)else:# P-Tuning v2, 没有进行重参数化编码past_key_values = self.embedding(prefix)return past_key_values

P-Tuning V2具体做法基本同Prefix Tuning,可以看作是将文本生成的Prefix Tuning技术适配到NLU任务中,然后做了一些改进:

  • 1、移除重参数化的编码器。以前的方法利用重参数化功能来提高训练速度和鲁棒性(如:Prefix Tuning中的MLP、P-Tuning中的LSTM)。在作者发现重参数化的改进很小,尤其是对于较小的模型,同时还会影响模型的表现。
  • 2、针对不同任务采用不同的提示长度
    • 提示长度在提示优化方法的超参数搜索中起着核心作用。在实验中,作者发现不同的理解任务通常用不同的提示长度来实现其最佳性能。
    • 从图3中,可以观察到,针对简单任务:较短的Prompt(20)即可取得不错的效果。针对复杂任务:如阅读理解,需要更长的Prompt(100)。
    • 重参数化与最佳提示长度有密切关联。例如,在RTE、CoNLL04和BoolQ中,MLP重参数化比嵌入更早达到最佳结果。

在这里插入图片描述

  • 3、引入多任务学习(MPT-2)。先在多任务的Prompt上进行预训练,然后再适配下游任务。

2.2 论文部分实验

  • 对于简单的NLU任务,如SST-2(单句分类),Prompt Tuning和P-Tuning在较小的规模下没有显示出明显的劣势。但是当涉及到复杂的挑战时,如:自然语言推理(RTE)和多选题回答(BoolQ),它们的性能会非常差。
  • 相反,P-Tuning v2在较小规模的所有任务中都与微调的性能相匹配。并且,P-tuning v2在RTE中的表现明显优于微调,特别是在BERT中。

在这里插入图片描述

  • P-Tuning v2在一些困难的NLU任务中,作者选择了三个典型的序列标注任务(名称实体识别(NER)、抽取式问答(QA)和语义角色标签(SRL)),共八个数据集。作者发现P-Tuning v2在所有任务上都能与全量微调相媲美,下图只展示了NER任务的实验结果。

在这里插入图片描述

  • P-Tuning v2是一种在不同规模和任务中都可与微调相媲美的提示方法。P-Tuning v2对从330M到10B的模型显示出一致的改进,并在序列标注等困难的序列任务上以很大的幅度超过了Prompt Tuning和P-Tuning。

2.3 轻量微调bloom模型

我们只需要在加载原模型后、配置训练器前加peft的代码即可。

from peft import PrefixTuningConfig, get_peft_model, TaskType# 和Prefix Tuning不同的是设置prefix_projection=False
config = PrefixTuningConfig(task_type=TaskType.CAUSAL_LM, num_virtual_tokens=10, prefix_projection=False)model = get_peft_model(model, config)# 打印可训练参数信息
model.print_trainable_parameters()trainable params: 491,520 || all params: 346,260,480 || trainable%: 0.1419509382069822
  • 配置训练器、模型训练及推理和参数高效微调PEFT(一)快速入门BitFit、Prompt Tuning、Prefix Tuning中2.1一样。
  • 显存消耗情况:
(base) root@autodl-container-adbc11ae52-f2ebff02:~# nvidia-smi 
Tue May 28 15:18:39 2024       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.89.02    Driver Version: 525.89.02    CUDA Version: 12.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  On   | 00000000:B1:00.0 Off |                  N/A |
| 33%   56C    P2   189W / 250W |   2826MiB / 11264MiB |     45%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
+-----------------------------------------------------------------------------+

这篇关于参数高效微调PEFT(二)快速入门P-Tuning、P-Tuning V2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1013245

相关文章

Python如何实现高效的文件/目录比较

《Python如何实现高效的文件/目录比较》在系统维护、数据同步或版本控制场景中,我们经常需要比较两个目录的差异,本文将分享一下如何用Python实现高效的文件/目录比较,并灵活处理排除规则,希望对大... 目录案例一:基础目录比较与排除实现案例二:高性能大文件比较案例三:跨平台路径处理案例四:可视化差异报

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

Java高效实现Word转PDF的完整指南

《Java高效实现Word转PDF的完整指南》这篇文章主要为大家详细介绍了如何用Spire.DocforJava库实现Word到PDF文档的快速转换,并解析其转换选项的灵活配置技巧,希望对大家有所帮助... 目录方法一:三步实现核心功能方法二:高级选项配置性能优化建议方法补充ASPose 实现方案Libre

Java List 使用举例(从入门到精通)

《JavaList使用举例(从入门到精通)》本文系统讲解JavaList,涵盖基础概念、核心特性、常用实现(如ArrayList、LinkedList)及性能对比,介绍创建、操作、遍历方法,结合实... 目录一、List 基础概念1.1 什么是 List?1.2 List 的核心特性1.3 List 家族成

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

Mybatis-Plus 3.5.12 分页拦截器消失的问题及快速解决方法

《Mybatis-Plus3.5.12分页拦截器消失的问题及快速解决方法》作为Java开发者,我们都爱用Mybatis-Plus简化CRUD操作,尤其是它的分页功能,几行代码就能搞定复杂的分页查询... 目录一、问题场景:分页拦截器突然 “失踪”二、问题根源:依赖拆分惹的祸三、解决办法:添加扩展依赖四、分页

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

史上最全MybatisPlus从入门到精通

《史上最全MybatisPlus从入门到精通》MyBatis-Plus是MyBatis增强工具,简化开发并提升效率,支持自动映射表名/字段与实体类,提供条件构造器、多种查询方式(等值/范围/模糊/分页... 目录1.简介2.基础篇2.1.通用mapper接口操作2.2.通用service接口操作3.进阶篇3

Python自定义异常的全面指南(入门到实践)

《Python自定义异常的全面指南(入门到实践)》想象你正在开发一个银行系统,用户转账时余额不足,如果直接抛出ValueError,调用方很难区分是金额格式错误还是余额不足,这正是Python自定义异... 目录引言:为什么需要自定义异常一、异常基础:先搞懂python的异常体系1.1 异常是什么?1.2