数据集007:垃圾分类数据集(含数据集下载链接)

2024-05-28 00:20

本文主要是介绍数据集007:垃圾分类数据集(含数据集下载链接),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据集简介

本数据拥有

训练集:43685张;

验证集:5363张;

测试集:5363张;

总类别数:158类。

部分代码:

定义数据集

class MyDataset(Dataset):def __init__(self, mode='train', transform=None):super(MyDataset, self).__init__()self.data = []self.transform = transformwith open(f'{data_path}{mode}.txt') as f:for line in f.readlines():info = line.strip().split(' ')if len(info) > 0:self.data.append([data_path+'/'+info[0].strip(), info[1].strip()])def __getitem__(self, idx):image_file, label = self.data[idx]img = Image.open(image_file).convert('RGB')img = np.array(img)# (Tensor(shape=[3, 227, 227], dtype=float32, place=CUDAPlace(0), stop_gradient=True,if self.transform is not None:img = self.transform(img)label = np.array([label], dtype="int64")return img, labeldef __len__(self):

定义ResNet网络


resnet50 = paddle.vision.models.resnet50(num_classes=158)

取单张测试图片进行可视化展示

import pylab as pl
import matplotlib.font_manager as fmtest_path = '/home/aistudio/Mydata/test1.txt'
myfont = fm.FontProperties(fname=r'/home/aistudio/simkai.ttf') # 设置字体   
jetson_path = '/home/aistudio/Mydata/garbage_classification.json'
with open(jetson_path, 'r') as f1:load_dict = json.load(f1)
with open(test_path, 'r') as f2:img_path = f2.readline().strip().split(' ')
test_img_path = '/home/aistudio/Mydata/' + f'{img_path[0]}'
print('输入测试图片路径为:')
print(test_img_path)
clas = load_dict[f'{lab1}']#从字典中查找标签0对应的垃圾种类
img = cv2.imread(test_img_path)
plt.imshow(img)
plt.title(f'预测:{clas}', fontproperties = myfont, fontsize=20)

数据库下载链接:垃圾分类数据集

这篇关于数据集007:垃圾分类数据集(含数据集下载链接)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1009014

相关文章

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键