源码- Spark中Worker源码分析(二)

2024-05-27 12:38
文章标签 分析 源码 worker spark

本文主要是介绍源码- Spark中Worker源码分析(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

继续前一篇的内容。前一篇内容为:
Spark中Worker源码分析(一)http://www.cnblogs.com/yourarebest/p/5300202.html

4.receive方法,
receive方法主要分为以下14种情况:

(1)worker向master注册成功后,详见代码
(2)worker向master发送心跳消息,如果还没有注册到master上,该消息将被忽略,详见代码
(3)worker的工作空间的清理,详见代码
(4)更换master,详见代码
(5)worker注册失败,详见代码
(6)再次连接worker,详见代码
(7)创建executor,详见代码
(8)executor的转态发生改变时,详见代码
(9)kill executor,详见代码
(10)创建driver,详见代码
(11)kill driver,详见代码
(12)driver的状态发生变化时,详见代码
(13)将worker注册到master上,详见代码
(14)app执行完毕,详见代码
worker与master相关的交互为(1)(2)(4)(6)(13)
worker与driver相关的交互为(10)(11)(12)
worker与executor相关的交互为(3)(7)(8)(9)(14),需要说明的是(3)(14)它们的完成都与executor有着密切的联系。



<code>
override def receive: PartialFunction[Any, Unit] = {
    //(1)注册成功的Woker
    case RegisteredWorker(masterRef, masterWebUiUrl) =>
      logInfo("Successfully registered with master " + masterRef.address.toSparkURL)
      registered = true
      changeMaster(masterRef, masterWebUiUrl)
      //守护线程15s发送一次心跳消息
      forwordMessageScheduler.scheduleAtFixedRate(new Runnable {
        override def run(): Unit = Utils.tryLogNonFatalError {
          self.send(SendHeartbeat)
        }
      }, 0, HEARTBEAT_MILLIS, TimeUnit.MILLISECONDS)
      //如果允许清理
      if (CLEANUP_ENABLED) {
        logInfo(s"Worker cleanup enabled; old application directories will be deleted in: $workDir")
        forwordMessageScheduler.scheduleAtFixedRate(new Runnable {
          override def run(): Unit = Utils.tryLogNonFatalError {
            //守护线程30min清理app文件夹
            self.send(WorkDirCleanup)
          }
        }, CLEANUP_INTERVAL_MILLIS, CLEANUP_INTERVAL_MILLIS, TimeUnit.MILLISECONDS)
      }
    //(2)worker向master发送心跳消息,如果还没有注册到master上,该消息将被忽略
    case SendHeartbeat =>
      if (connected) { sendToMaster(Heartbeat(workerId, self)) }
    //(3)worker的工作空间的清理
    case WorkDirCleanup =>
         //为了加快独立将来独立线程的清理工作,不要占用worker rpcEndpoint的端口号,拷贝ids所以它可以被清理线程使用
      val appIds = executors.values.map(_.appId).toSet
      val cleanupFuture = concurrent.future {
        val appDirs = workDir.listFiles()
        if (appDirs == null) {
          throw new IOException("ERROR: Failed to list files in " + appDirs)
        }
        appDirs.filter { dir =>
          //目录正在被app使用-当清理时检查app是否在运行
          val appIdFromDir = dir.getName
          val isAppStillRunning = appIds.contains(appIdFromDir)
          dir.isDirectory && !isAppStillRunning &&
          !Utils.doesDirectoryContainAnyNewFiles(dir, APP_DATA_RETENTION_SECONDS)
        }.foreach { dir =>
          logInfo(s"Removing directory: ${dir.getPath}")
          Utils.deleteRecursively(dir)
        }
      }(cleanupThreadExecutor)
      cleanupFuture.onFailure {
        case e: Throwable =>
          logError("App dir cleanup failed: " + e.getMessage, e)
      }(cleanupThreadExecutor)
    //(4)更换master
    case MasterChanged(masterRef, masterWebUiUrl) =>
      logInfo("Master has changed, new master is at " + masterRef.address.toSparkURL)
      changeMaster(masterRef, masterWebUiUrl)
      val execs = executors.values.
        map(e => new ExecutorDescription(e.appId, e.execId, e.cores, e.state))
      masterRef.send(WorkerSchedulerStateResponse(workerId, execs.toList, drivers.keys.toSeq))
    //(5)worker注册失败
    case RegisterWorkerFailed(message) =>
      if (!registered) {
        logError("Worker registration failed: " + message)
        System.exit(1)
      }
    //(6)再次连接Worker
    case ReconnectWorker(masterUrl) =>
      logInfo(s"Master with url $masterUrl requested this worker to reconnect.")
      //再次将worker注册到masters上
      registerWithMaster()
    //(7)创建Executor
    case LaunchExecutor(masterUrl, appId, execId, appDesc, cores_, memory_) =>if (masterUrl != activeMasterUrl) {
        logWarning("Invalid Master (" + masterUrl + ") attempted to launch executor.")
      } else {
        try {
          logInfo("Asked to launch executor %s/%d for %s".format(appId, execId, appDesc.name))
          //创建executor的工作目录
          val executorDir = new File(workDir, appId + "/" + execId)
          if (!executorDir.mkdirs()) {
            throw new IOException("Failed to create directory " + executorDir)
          }
          //为executors创建本地目录,通过SPARK_EXECUTOR_DIRS环境变量设置,当app执行完后并删除
          val appLocalDirs = appDirectories.get(appId).getOrElse {
            Utils.getOrCreateLocalRootDirs(conf).map { dir =>
              val appDir = Utils.createDirectory(dir, namePrefix = "executor")
              Utils.chmod700(appDir)
              appDir.getAbsolutePath()
            }.toSeq
          }
          appDirectories(appId) = appLocalDirs
          val manager = new ExecutorRunner(
            appId,
            execId,
            appDesc.copy(command = Worker.maybeUpdateSSLSettings(appDesc.command, conf)),
            cores_,
            memory_,
            self,
            workerId,
            host,
            webUi.boundPort,
            publicAddress,
            sparkHome,
            executorDir,
            workerUri,
            conf,
            appLocalDirs, ExecutorState.LOADING)
          executors(appId + "/" + execId) = manager
          manager.start()
          coresUsed += cores_
          memoryUsed += memory_
          sendToMaster(ExecutorStateChanged(appId, execId, manager.state, None, None))
        } catch {
          case e: Exception => {
            logError(s"Failed to launch executor $appId/$execId for ${appDesc.name}.", e)
            if (executors.contains(appId + "/" + execId)) {
              executors(appId + "/" + execId).kill()
              executors -= appId + "/" + execId
            }
            sendToMaster(ExecutorStateChanged(appId, execId, ExecutorState.FAILED,
              Some(e.toString), None))
          }
        }
      }
    //(8)executor的转态发生改变时
    case executorStateChanged @ ExecutorStateChanged(appId, execId, state, message, exitStatus) =>
      handleExecutorStateChanged(executorStateChanged)
    //(9)kill executor
    case KillExecutor(masterUrl, appId, execId) =>
      if (masterUrl != activeMasterUrl) {
        logWarning("Invalid Master (" + masterUrl + ") attempted to launch executor " + execId)
      } else {
        val fullId = appId + "/" + execId
        executors.get(fullId) match {
          case Some(executor) =>
            logInfo("Asked to kill executor " + fullId)
            executor.kill()
          case None =>
            logInfo("Asked to kill unknown executor " + fullId)
        }
      }
    //(10)创建Driver
    case LaunchDriver(driverId, driverDesc) => {
      logInfo(s"Asked to launch driver $driverId")
      val driver = new DriverRunner(
        conf,
        driverId,
        workDir,
        sparkHome,
        driverDesc.copy(command = Worker.maybeUpdateSSLSettings(driverDesc.command, conf)),
        self,
        workerUri,
        securityMgr)
      drivers(driverId) = driver
      driver.start(
      coresUsed += driverDesc.cores
      memoryUsed += driverDesc.mem
    }
    //(11)kill Driver
    case KillDriver(driverId) => {
      logInfo(s"Asked to kill driver $driverId")
      drivers.get(driverId) match {
        case Some(runner) =>
          runner.kill()
        case None =>
          logError(s"Asked to kill unknown driver $driverId")
      }
    }
    //(12)driver的状态发生变化时
    case driverStateChanged @ DriverStateChanged(driverId, state, exception) => {
      handleDriverStateChanged(driverStateChanged)
    }
    //(13)将worker注册到master上
    case ReregisterWithMaster =>
      reregisterWithMaster()
    //(14)app执行完毕
    case ApplicationFinished(id) =>
      finishedApps += id
      //删除执行完的app在执行过程中创建的本地文件
      maybeCleanupApplication(id)
  }
</code>

这篇关于源码- Spark中Worker源码分析(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1007503

相关文章

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1