开发心电疾病分类的深度学习模型并部署运行于ARM虚拟硬件平台(AVH)

本文主要是介绍开发心电疾病分类的深度学习模型并部署运行于ARM虚拟硬件平台(AVH),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、ARM虚拟硬件平台介绍

二、心电疾病分类模型介绍

三、部署流程

3.1 基于百度云平台订阅虚拟硬件镜像

3.2 安装编译相关组件

3.1 数据加载

3.2  模型转换

方式一: tensorflow模型转换为onnx模型,onnx模型转换为TVM模型

方式二: tensorflow模型转换为tensorflow lite模型,tflite模型转换为tvm模型

3)两种方式部署的差异

3.3 环境变量配置

3.4 模型编译

3.5 模型运行

四、部署测试效果

方式一:tf->onnx->tvm

方式二:tf-tflite->tvm

五、问题QA

六、总结

七、参考文档


一、ARM虚拟硬件平台介绍

Arm 虚拟硬件平台 AVH(Arm Virtual Hardware),是ARM公司推出的虚拟硬件开发方式,通过在云平台中虚拟化流行的物联网开发套件、ARM的处理器和系统,从而扩展并加速了物联网软件开发。--通俗的讲:我们可以通过云平台来远程部署和运行程序在该硬件上(该硬件称为虚拟硬件),在该虚拟硬件平台上可以连接众多arm合作的硬件板。因此可以让我们在开发产品的前期得以在不同的硬件上进行模拟验证。

虚拟硬件平台的架构:

图中红色圈住的地方为本文所采用的开发方式:也即是基于百度云以及AVH FVP models。 

包含的硬件:

cortex-m55 、cortex-m85等。本文基于cortex-m55进行验证。

二、心电疾病分类模型介绍

   心电图(ECG)是诊断心脏疾病的关键工具,本文介绍基于心电数据进行疾病的分类的模型,该模型分类输出为7种。输入数据为10s的心电数据维数1x3600,输出维度为1x7。 模型基于TensorFlow框架训练,结构为CNN网络架构,模型训练保存输出为pb格式(model.pb)

三、部署流程

3.1 基于百度云平台订阅虚拟硬件镜像

 參考文档2进行订阅。

3.2 安装编译相关组件

1)离线下载并上传到百度云安装这些组件 

cpackget add ARM.CMSIS.5.9.0.pack

cpackget add ARM::CMSIS-DSP@1.15.0

cpackget add ARM::CMSIS-NN@4.1.0

cpackget add ARM::V2M_MPS3_SSE_300_BSP@1.4.0

cpackget add ARM::V2M_MPS3_SSE_310_BSP@1.3.0

cpackget add Keil::ARM_Compiler@1.7.2

 

参考文档2,官方提供了相对比较完整的pack包汇总的文件包,只要把这个文件下载下来,并传输到云服务器指定位置,即可自动识别,完成pack包的安装。

wget https://Arm-workshop.bj.bcebos.com/packs.tar.bz2

 

 

 

2)执行命令

  配置cmsis 

# download cmsis-toolbox
cmsis_toolbox_name="cmsis-toolbox-linux-amd64"
cmsis_toolbox_version="2.2.1"
cmsis_toolbox_url="https://github.com/Open-CMSIS-Pack/cmsis-toolbox/releases/download/${cmsis_toolbox_version}/${cmsis_toolbox_name}.tar.gz"
wget ${cmsis_toolbox_url}
tar -vxf ${cmsis_toolbox_name}.tar.gz
rm ${cmsis_toolbox_name}.tar.gz# copy to opt
mv ${cmsis_toolbox_name} ctools
rm -rf /opt/ctools
mv ctools /opt

配置tvm和onnx 

echo 'export PATH=/home/ubuntu/.local/bin:$PATH' >> ~/.bashrc
source ~/.bashrc
pip install --upgrade pip
pip install opencv-python
pip install apache-tvm
pip install onnx

3.1 数据加载

 1)编写python文件加载心电数据,并将数据转换为input.h文件,输出数据类别数组转换为output.h文件。

2)执行转换数据程序

#Windows执行
python3 convert_ECGData.py   data/TestX_eu_MLIII.csv#linux  python3 ./convert_ECGData.py ./data/TestX_eu_MLIII.csv

2)执行 label转换程序,将标签序列转换为label.h头文件

# windows执行
python  convert_labels.py  data/TestY_eu_MLIII.csv#linux: python3  ./convert_labels.py  ./data/TestY_eu_MLIII.csv

3.2  模型转换

方式一: tensorflow模型转换为onnx模型,onnx模型转换为TVM模型

pip install tf2onnx

 1)执行以下程序进行tf到onnx模型转换:

python -m tf2onnx.convert --saved-model save/CNN --output  onnx/cnn_model.onnx

 2)重命令onnx模型

读取onnx模型输入名称

 查到輸入名称为input_1

INPUT_NODE_NAME="input_1"
sudo python rename_onnx_model.py --model  cnn_model.onnx \--origin_names ${INPUT_NODE_NAME} \--new_names x \--save_file cnn_model.onnx

3)onnx模型转换为tvm模型

TVM_TARGET="cortex-m55"
sudo python3 -m tvm.driver.tvmc compile --target=cmsis-nn,c \--target-cmsis-nn-mcpu=$TVM_TARGET \--target-c-mcpu=$TVM_TARGET \--runtime=crt \--executor=aot \--executor-aot-interface-api=c \--executor-aot-unpacked-api=1 \--pass-config tir.usmp.enable=1 \--pass-config tir.usmp.algorithm=hill_climb \--pass-config tir.disable_storage_rewrite=1 \--pass-config tir.disable_vectorize=1 \cnn_model.onnx \--output-format=mlf \--model-format=onnx \--input-shapes x:[1,3600] \--module-name=cls \--output=cls.tar

 结果:

4)解压tvm模型文件

sudo mkdir -p "${PWD}/cls"
sudo tar -xvf cls.tar -C "${PWD}/cls"

方式二: tensorflow模型转换为tensorflow lite模型,tflite模型转换为tvm模型

1)安装tflite包:

pip install pyserial==3.5 tflite=-2.1

2)查询tflite模型的输入和输出

3)更改main.c文件

4) tflite 转换为tvm

TVM_TARGET="cortex-m55"python3 -m tvm.driver.tvmc compile --target=cmsis-nn,c \--target-cmsis-nn-mcpu=$TVM_TARGET \--target-c-mcpu=$TVM_TARGET \--runtime=crt \--executor=aot \--executor-aot-interface-api=c \--executor-aot-unpacked-api=1 \--pass-config tir.usmp.enable=1 \--pass-config tir.usmp.algorithm=hill_climb \--pass-config tir.disable_storage_rewrite=1 \--pass-config tir.disable_vectorize=1 \model.tflite \--output-format=mlf \--model-format=tflite \--input-shapes serving_default_input_1:[1,3600] \--module-name=cls\--output=cls.tar

3)两种方式部署的差异

 支持TF、Pytorch、onnx转换为tvm。因此前一种方式比第二种方式多了一步转换步骤。

3.3 环境变量配置

3.4 模型编译

RUN_DEVICE_NAME="M55"
cbuild object_classification+PaddleClas$RUN_DEVICE_NAME.cprj

生成:tmp(makefile相关文件)out文件(目标文件axf)

 

3.5 模型运行

VHT_Platform="FVP_Corstone_SSE-300"
$VHT_Platform  -C cpu0.CFGDTCMSZ=15 \-C cpu0.CFGITCMSZ=15 \-C mps3_board.uart0.out_file=\"-\" \-C mps3_board.uart0.shutdown_tag=\"EXITTHESIM\" \-C mps3_board.visualisation.disable-visualisation=1 \-C mps3_board.telnetterminal0.start_telnet=0 \-C mps3_board.telnetterminal1.start_telnet=0 \-C mps3_board.telnetterminal2.start_telnet=0 \-C mps3_board.telnetterminal5.start_telnet=0 \"out/ECG_classification/PaddleClas$RUN_DEVICE_NAME/ECG_classification.axf" \--stat

四、部署测试效果

方式一:tf->onnx->tvm

方式二:tf-tflite->tvm

对比运行时间,方式二快一些,相差 7s

五、问题QA

1)出现package"tflite.Model" is not installed. Hint:"pip installtlcpack[tvmc]"

解决方式:

 安装:pip install pyserial==3.5 tflite=-2.1

参考【3】

2)找不到路径或写入文件失败

添加权限:sudo chmod -R 777 tmp

3)license error

Error: license error: License checkout for feature SG_Simulator with version 11.19 has been denied by Flex back-end. Error code: -10
Feature has expired.
Feature:       SG_Simulator
Expire date:   31-mar-2024
License path:  /opt/data.dat:/opt/arm/licenses/license.dat:
FlexNet Licensing error:-10,32License checkout for feature FM_Simulator with version 11.19 has been denied by Flex back-end. Error code: -5
No such feature exists.
Feature:       FM_Simulator
License path:  /opt/data.dat:/opt/arm/licenses/license.dat:
FlexNet Licensing error:-5,357License checkout for feature SG_Simulator with version 11.19 has been denied by Flex back-end. Error code: -10
Feature has expired.
Feature:       SG_Simulator
Expire date:   31-mar-2024
License path:  /opt/data.dat:/opt/arm/licenses/license.dat:
FlexNet Licensing error:-10,32
In file: /tmp/plgbuild/abs_build/1228881_61942/trunk/work/fastsim/Framework/scx/SCXSimulationEngine.cpp:3276

Error: license error: Simulation Engine module unavailable!
In file: /tmp/plgbuild/abs_build/1228881_61942/trunk/work/fastsim/Framework/scx/SCXSimulationEngine.cpp:2875
ERROR: uncaught exception occurred. Exception message follows:
Error: Wrong version of armctmodel. Version 11.19.25 (API Version 1.2) of the Portfolio was used to build the model. Please use identical major.minor versions of the Portfolio and the Tools.

解决方式:重新订阅新版镜像

4) 出现.x =input 错误

/home/ubuntu/ECG_classification/main.c:20:4: error: field designator 'x' does not refer to any field in type 'struct tvmgen_cls_inputs'
                .x = input,
                 ^
/home/ubuntu/ECG_classification/main.c:23:4: error: field designator 'output' does not refer to any field in type 'struct tvmgen_cls_outputs'
                .output = output,
                 ^
2 errors generated.
ninja: build stopped: subcommand failed.
error cbuild: error executing 'cmake' build
 

解决方式:更改结构体变量和模型输入输出名称一致 

六、总结

该文章完成了深度学习模型的训练、验证、模型导出,模型转换、模型部署以及相关环境配置,最终编译和运行成功。通过ARM虚拟硬件平台进行软件程序的验证是一个很好的选择。未来可以进一步尝试其它的硬件部署以验证模型的性能。

七、参考文档

【1】Virtual Hardware – Software Development Without Hardware – Arm®

【2】iot-demo

【3】1. microTVM CLI Tool — tvm 0.17.dev0 documentation

【4】Paddle-examples-for-AVH 

这篇关于开发心电疾病分类的深度学习模型并部署运行于ARM虚拟硬件平台(AVH)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1007402

相关文章

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”