用c++用4个凸函数(觉得啥好用用啥)去测试adam,rmsprop,adagrad算法的性能(谁先找到最优点)

本文主要是介绍用c++用4个凸函数(觉得啥好用用啥)去测试adam,rmsprop,adagrad算法的性能(谁先找到最优点),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为了测试 Adam、RMSProp 和 Adagrad 算法的性能,你可以使用四个凸函数进行实验。以下是一些常用的凸函数示例:

  1. Rosenbrock 函数:

    Rosenbrock函数

  2. Booth 函数:

    Booth函数

  3. Himmelblau 函数:

    Himmelblau函数

  4. Beale 函数:

    Beale函数

你可以选择其中一个或多个函数来测试算法的性能。对于每个函数,你可以使用不同的初始点,并应用 Adam、RMSProp 和 Adagrad 算法来寻找最优点。最优点可以通过达到较低的函数值或满足预定精度条件来定义。

在实验过程中,你可以记录每个算法在不同函数和初始点上找到最优点的迭代次数、计算时间以及最终的函数值。通过比较这些指标,你可以评估每个算法的性能和效果。

请注意,算法的性能可能会因函数的形状和参数设置而有所不同。因此,建议你在不同的凸函数上进行多次实验,以获得更全面的性能比较结果。

#include <iostream>
#include <cmath>
#include <vector>// 定义凸函数类
class ConvexFunction {
public:virtual double evaluate(const std::vector<double>& x) = 0;
};// Rosenbrock 函数
class RosenbrockFunction : public ConvexFunction {
public:double evaluate(const std::vector<double>& x) override {double sum = 0.0;for (size_t i = 0; i < x.size() - 1; ++i) {double term1 = pow(x[i + 1] - pow(x[i], 2), 2);double term2 = pow(1 - x[i], 2);sum += 100 * term1 + term2;}return sum;}
};// Booth 函数
class BoothFunction : public ConvexFunction {
public:double evaluate(const std::vector<double>& x) override {double term1 = pow(x[0] + 2 * x[1] - 7, 2);double term2 = pow(2 * x[0] + x[1] - 5, 2);return term1 + term2;}
};// Himmelblau 函数
class HimmelblauFunction : public ConvexFunction {
public:double evaluate(const std::vector<double>& x) override {double term1 = pow(pow(x[0], 2) + x[1] - 11, 2);double term2 = pow(x[0] + pow(x[1], 2) - 7, 2);return term1 + term2;}
};// Beale 函数
class BealeFunction : public ConvexFunction {
public:double evaluate(const std::vector<double>& x) override {double term1 = pow(1.5 - x[0] + x[0] * x[1], 2);double term2 = pow(2.25 - x[0] + x[0] * pow(x[1], 2), 2);double term3 = pow(2.625 - x[0] + x[0] * pow(x[1], 3), 2);return term1 + term2 + term3;}
};// Adam 算法
std::vector<double> adam(const ConvexFunction& func, const std::vector<double>& initial_x, double learning_rate, int max_iterations) {std::vector<double> x = initial_x;std::vector<double> m(x.size(), 0.0);std::vector<double> v(x.size(), 0.0);double beta1 = 0.9;double beta2 = 0.999;double epsilon = 1e-8;for (int i = 0; i < max_iterations; ++i) {// 计算梯度std::vector<double> gradient(x.size(), 0.0);for (size_t j = 0; j < x.size(); ++j) {std::vector<double> x_plus_delta = x;x_plus_delta[j] += epsilon;double f_plus_delta = func.evaluate(x_plus_delta);gradient[j] = (f_plus_delta - func.evaluate(x)) / epsilon;}// 更新参数for (size_t j = 0; j < x.size(); ++j) {m[j] = beta1 * m[j] + (1 - beta1) * gradient[j];v[j] = beta2 * v[j] + (1 - beta2) * pow(gradient[j], 2);double m_hat = m[j] / (1 - pow(beta1, i + 1));double v_hat = v[j] / (1 - pow(beta2, i + 1));x[j] -= learning_rate * m_hat / (sqrt(v_hat) + epsilon);}}return x;
}// RMSProp 算法
std::vector<double> rmsprop(const ConvexFunction& func, const std::vector<double>& initial_x, double learning_rate, double decay_rate, int max_iterations) {std::vector<double> x = initial_x;std::vector<double> cache(x.size(), 0.0);double epsilon = 1e-8;for (int i = 0; i < max_iterations; ++i) {// 计算梯度std::vector<double> gradient(x.size(), 0.0);for (size_t j = 0; j < x.size(); ++j) {std::vector<double> x_plus_delta = x;x_plus_delta[j] += epsilon;double f_plus_delta = func.evaluate(x_plus_delta);gradient[j] = (f_plus_delta - func.evaluate(x)) / epsilon;}// 更新参数for (size_t j = 0; j < x.size(); ++j) {cache[j] = decay_rate * cache[j] + (1 - decay_rate) * pow(gradient[j], 2);x[j] -= learning_rate * gradient[j] / (sqrt(cache[j]) + epsilon);}}return x;
}// Adagrad 算法
std::vector<double> adagrad(const ConvexFunction& func, const std::vector<double>& initial_x, double learning_rate, int max_iterations) {std::vector<double> x = initial_x;std::vector<double> cache(x.size(), 0.0);double epsilon = 1e-8;for (int i = 0; i < max_iterations; ++i) {// 计算梯度std::vector<double> gradient(x.size(), 0.0);for (size_t j = 0; j < x.size(); ++j) {std::vector<double> x_plus_delta = x;x_plus_delta[j] += epsilon;double f_plus_delta = func.evaluate(x_plus_delta);gradient[j] = (f_plus_delta - func.evaluate(x)) / epsilon;}// 更新参数for (size_t j = 0; j < x.size(); ++j) {cache[j] += pow(gradient[j], 2);x[j] -= learning_rate * gradient[j] / (sqrt(cache[j]) + epsilon);}}return x;
}int main() {// 创建凸函数对象RosenbrockFunction rosenbrock;BoothFunction booth;HimmelblauFunction himmelblau;BealeFunction beale;// 设置算法参数double learning_rate = 0.01;double decay_rate = 0.9;int max_iterations = 1000;// 初始化初始点std::vector<double> initial_x = { 0.0, 0.0 };// 使用 Adam 算法找到最优点std::vector<double> adam_result = adam(rosenbrock, initial_x, learning_rate, max_iterations);std::cout << "Adam Result: (" << adam_result[0] << ", " << adam_result[1] << ")" << std::endl;// 使用 RMSProp 算法找到最优点std::vector<double> rmsprop_result = rmsprop(rosenbrock, initial_x, learning_rate, decay_rate, max_iterations);std::cout << "RMSProp Result: (" << rmsprop_result[0] << ", " << rmsprop_result[1] << ")" << std::endl;// 使用 Adagrad 算法找到最优点std::vector<double> adagrad_result = adagrad(rosenbrock, initial_x, learning_rate, max_iterations);std::cout << "Adagrad Result: (" << adagrad_result[0] << ", " << adagrad_result[1] << ")" << std::endl;return 0;
}

这篇关于用c++用4个凸函数(觉得啥好用用啥)去测试adam,rmsprop,adagrad算法的性能(谁先找到最优点)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1006141

相关文章

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

Zabbix在MySQL性能监控方面的运用及最佳实践记录

《Zabbix在MySQL性能监控方面的运用及最佳实践记录》Zabbix通过自定义脚本和内置模板监控MySQL核心指标(连接、查询、资源、复制),支持自动发现多实例及告警通知,结合可视化仪表盘,可有效... 目录一、核心监控指标及配置1. 关键监控指标示例2. 配置方法二、自动发现与多实例管理1. 实践步骤

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被