【AI大模型】这可能是最简单的本地大模型工具,无须部署,一键使用

2024-05-26 00:12

本文主要是介绍【AI大模型】这可能是最简单的本地大模型工具,无须部署,一键使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

LM-Studio​编辑

那么问题来了,为什么我要在本地部署大模型?

隐私性:

定制性:

成本和体验的优化:

工具功能特点和使用方式介绍:

首页提供搜索功能和一些模型的推荐

模型下载管理:

聊天界面:​编辑

模型偏好设置

使用速度体验:


前言

不需要配置环境,不需要部署,不需要自己找模型。小白也可以打开即用的本地大模型使用工具来了,下面就谈一谈我的使用感受和心得:

LM-Studio

那么问题来了,为什么我要在本地部署大模型?

个人使用下来,最吸引我的有这三点:

  1. 隐私性

网络大模型你的输入都是要上传的云端的,也就是你的隐私肯定会被大模型服务商所获得,这也是为什么那么多公司内部禁止使用网络大模型的原因。而且由于安全和审核机制,你所需要的或者发送的敏感的内容会被屏蔽。但是本地部署,数据完全由自己掌握。

  1. 定制性

目前大部分免费使用的大模型都是通用模型,就那几种,虽然可以通过提示词约束,但是内容生成大部分时候只是差强人意。本地部署,你将拥有整个开源世界的微调模型,医疗,法律,学术,动漫,感情,你即使不去定制自己的模型,也将拥有专业的各领域专家来帮你解决你能想到的大部分问题。更不必说定制自己的专属模型的可能性。

  1. 成本和体验的优化

首先承认大部分开源模型的上限是没有闭源模型高的,但是很多时候闭源模型的响应感受会受到网络,当前访问人数的限制。除非你愿意开会员,即使你愿意开会员,目前除了gpt-4o。大部门模型的响应是一个字一个字往外蹦的,尤其某些厂商做的恶心限制,离开网页就停止输出(某一言)如果你本地有一个还行的显卡,你会感受到原来大模型回答原来可以很迅速。

工具功能特点和使用方式介绍:

下载即exe,安装后即可使用,本体不到500m(提供mac和linux版本)

首页提供搜索功能和一些模型的推荐

你可以直接搜索并下载开源世界的大模型(目前看基本上huggingface,需要梯子)并下载使用,推荐模型会给出介绍。如他的来源是什么,他是多少参数的大模型,什么功能,是否经过量化处理,本地运行至少需求多少内存,占用多少硬盘空间。

模型下载管理:

注意!无论设置什么目录,模型目录必须有如下层级结构,否则会找不到模型:

聊天界面:

模型偏好设置

在聊天界面右上角有个设置功能,可以帮助我们更好的个性化使用,我会给出一些比较常用的参数设置解释

  1. 模型初始化角色配置

Preset 可以选择不同模型的初始化设置,你也可以设置自定义的模型使用配置,包括不限于,系统角色初始化提示词(system prompt),回答的随机程度,系统使用内存和显存的占比等。

  1. 模型回答内容控制:

设置模型记忆上下文长度(content length),采样温度(temperature)介于 0 和 1 之间。较高的值(如 0.7)将使输出更加随机,而较低的值(如 0.2)将使其更加集中和确定性,最大生成内容长度(tokens to generate),默认-1由大模型决定生成长度。

  1. 模型内容质量控制

Top k : 模型回复时所考虑的回复质量占总体回复的质量比例,总体来说比例越高,回答的质量越高,效果也越单一。

Repeat penalty: 模型重复惩罚,越高模型回答的内容重复性越低

CPU threads: 占用线程。经过尝试,增加占用线程对模型响应速度有少量提升,效果不明显。

  1. 显存内存使用占比:

没什么可说的,显存能撑住的情况下,拉到最大,内存的速度比显存慢多了。

使用速度体验:

2060 8g 显卡,7B Q4量化模型(基于llama3 微调的中文模型)。生成token速度为31t/s左右(比大部分网络模型响应快一倍左右),感受还是很不错的,如果完全不使用显存只使用内存,速度约5t/s 只能说能用。

kimi效果:

这个软件可以直接搜索官网mstudio.ai下载。

无法下载模型的小伙伴我也在我的公众号中打包了,我所使用的中文llama3模型(Llama3-8B-Chinese-Chat-q4_0-v2_1,和原始英文模型下载(Meta-Llama-3-8B-Instruct-Q4_K_M)已经软件的整合包下载。

后台回复 LmStudio 即可 !每天还有更多教程和AI资讯分享!

——因为热爱的AI漫谈社

这篇关于【AI大模型】这可能是最简单的本地大模型工具,无须部署,一键使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1003010

相关文章

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

SQLite3命令行工具最佳实践指南

《SQLite3命令行工具最佳实践指南》SQLite3是轻量级嵌入式数据库,无需服务器支持,具备ACID事务与跨平台特性,适用于小型项目和学习,sqlite3.exe作为命令行工具,支持SQL执行、数... 目录1. SQLite3简介和特点2. sqlite3.exe使用概述2.1 sqlite3.exe

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ