YOLOv10 | 无NMS的YOLO | 实时端到端目标检测的新突破

2024-05-25 12:52

本文主要是介绍YOLOv10 | 无NMS的YOLO | 实时端到端目标检测的新突破,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

过去几年里,YOLOs因在计算成本和检测性能之间实现有效平衡而成为实时目标检测领域的主流范式。研究人员针对YOLOs的结构设计、优化目标、数据增强策略等进行了深入探索,并取得了显著进展。然而,对非极大值抑制(NMS)的后处理依赖阻碍了YOLOs的端到端部署,并对推理延迟产生负面影响。此外,YOLOs中各种组件的设计缺乏全面和彻底的审查,导致明显的计算冗余并限制了模型的性能。这导致次优的效率,以及性能提升的巨大潜力。在这项工作中,我们旨在从后处理和模型架构两个方面进一步推进YOLOs的性能-效率边界。为此,我们首先提出了用于YOLOs无NMS训练的持续双重分配,该方法同时带来了竞争性的性能和较低的推理延迟。此外,我们为YOLOs引入了全面的效率-准确性驱动模型设计策略。我们从效率和准确性两个角度全面优化了YOLOs的各个组件,这大大降低了计算开销并增强了模型能力。我们的努力成果是新一代YOLO系列,专为实时端到端目标检测而设计,名为YOLOv10。广泛的实验表明,YOLOv10在各种模型规模下均达到了最先进的性能和效率。例如,在COCO数据集上,我们的YOLOv10-S在相似AP下比RT-DETR-R18快1.8倍,同时参数和浮点运算量(FLOPs)减少了2.8倍。与YOLOv9-C相比,YOLOv10-B在相同性能下延迟减少了46%,参数减少了25%。

论文地址YOLOv10: Real-Time End-to-End Object Detection点击即可跳转

官方代码官方代码仓库点击即可跳转

关注我后续会发布更详细的解读以及创新

目录

1. 创新点

2. 精度对比

3. 一致匹配度量(Consistent Matching Metric)

3.1 效率驱动的模型设计

3.2 基于秩的块设计(Rank-Guided Block Design)

3.3 精度驱动的模型设计

4.总结


1. 创新点

无NMS的一致双分配(consistent dual assignments):

  • YOLOv10提出了一种通过双标签分配而不用非极大值抑制NMS的策略。这种方法结合了一对多和一对一分配策略的优势,提高了效率并保持了性能。

效率-精度驱动的模型设计(Holistic Efficiency-Accuracy Driven Model Design):

  • 轻量化分类头:在不显著影响性能的情况下,减少了计算开销。

  • 空间-通道解耦下采样:解耦空间下采样和通道调整,优化计算成本。

  • 基于秩的块设计:根据各阶段的内在秩适应块设计,减少冗余,提高效率。

  • 大核卷积和部分自注意力PSA:在不显著增加计算成本的情况下,增强了感受野和全局建模能力。

图片

1. 一致双分配策略(Consistent Dual Assignments)

YOLOv10引入了一种新的双分配策略,用于在训练期间同时利用一对多(one-to-many)和一对一(one-to-one)标签分配。这种方法在保持模型高效训练的同时,摆脱了推理过程中对非极大值抑制NMS的依赖。

双标签分配(Dual Label Assignments)

  • 一对多分配:在训练期间,多个预测框被分配给一个真实物体标签。这种策略提供了丰富的监督信号,优化效果更好。

  • 一对一分配:仅一个预测框被分配给一个真实物体标签,避免了NMS,但由于监督信号较弱,容易导致收敛速度慢和性能欠佳。

  • 双头架构:模型在训练期间使用两个预测头,一个使用一对多分配,另一个使用一对一分配。这样,模型可以在训练期间利用一对多分配的丰富监督信号,而在推理期间则使用一对一分配的预测结果,从而实现无NMS的高效推理。

2. 精度对比

  • 图片

    可视化结果

    图片

    消融实验和分析

    图片

    图片

图片

3. 一致匹配度量(Consistent Matching Metric)

为了在训练期间保持两个预测头的一致性,提出了一致匹配度量。通过调整匹配度量参数,使得一对一和一对多分配的监督信号一致,减少了训练期间的监督差距,提升了模型的预测质量。

整体效率-精度驱动的模型设计(Holistic Efficiency-Accuracy Driven Model Design)

YOLOv10在模型架构的各个方面进行了全面优化,旨在提升效率精度

3.1 效率驱动的模型设计

轻量化分类头(Lightweight Classification Head)

在YOLO系列中,分类头和回归头通常共享相同的架构,但分类任务的计算开销更大。为分类头采用轻量级的架构,包括两个3×3的深度可分离卷积(depthwise separable convolutions)和一个1×1卷积,以减少计算开销。

空间-通道解耦下采样(Spatial-Channel Decoupled Downsampling)

传统的下采样方法同时进行空间和通道的转换,计算成本较高。YOLOv10首先使用逐点卷积(pointwise convolution)调整通道维度,然后使用深度卷积(depthwise convolution)进行空间下采样。这样可以最大限度地保留信息,同时减少计算成本。

3.2 基于秩的块设计(Rank-Guided Block Design)

在YOLO模型中,各阶段通常使用相同的基本构建块,容易导致深层阶段的计算冗余。因此根据各阶段的内在秩(intrinsic rank)调整块设计,减少冗余,采用紧凑的反向块(Compact Inverted Block, CIB)设计,用深度卷积进行空间混合和逐点卷积进行通道混合,提高效率。

图片

3.3 精度驱动的模型设计

大核卷积(Large-Kernel Convolution)

大核卷积的感受野较大,能够更好地捕捉图像中的全局信息。然而,直接在所有阶段使用大核卷积可能会导致小物体特征的污染,并增加高分辨率阶段的I/O开销和延迟。因此,在深层阶段使用大核深度卷积(如7×7)来扩大感受野,增强模型能力,同时使用结构重参数化技术(structural reparameterization)优化训练。

对于小模型规模(如YOLOv10-N/S),大核卷积的使用能够显著提升性能,而对于大模型规模(如YOLOv10-M),其天然较大的感受野使得大核卷积的效果不明显,因此仅在小模型中使用。

部分自注意力(Partial Self-Attention, PSA)

部分自注意力模块通过引入全局建模能力来提升模型性能,同时保持较低的计算开销。

自注意力(self-attention)在视觉任务中因其出色的全局建模能力而被广泛使用,但其计算复杂度和内存占用较高。本文引入PSA模块,通过将特征按通道分成两部分,仅对一部分应用多头自注意力(Multi-Head Self-Attention, MHSA),然后进行融合,增强全局建模能力,降低计算复杂度。

3.4 YOLOv10的base版本yaml文件

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]b: [0.67, 1.00, 512] # YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2fCIB, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 1, PSA, [1024]] # 10# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2fCIB, [512, True]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)- [-1, 1, SCDown, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)

4.总结

YOLOv10引入了额外的one-to-one头部,通过双分配策略,在训练时提供更丰富的监督信息,而在推理时则利用one-to-one头部进行高效预测,从而无需NMS后处理。此外,YOLOv10从效率和准确性两个方面全面优化了YOLO的各个组件,包括轻量级分类头部、空间-通道解耦的下采样层、基于秩的模块设计等,以降低计算冗余并提升模型性能。 

YOLOv10检测器的提出不仅为实时目标检测领域带来了新的突破,也展示了通过后处理和模型设计的联合优化,同时提升效率和精度的有效思路。YOLOv10检测器有望在自动驾驶、机器人导航、物体跟踪等实际应用中得到广泛应用,为实时目标检测任务带来更高的效率。

对于后处理,我们提出了用于NMS-free训练的一致双分配策略,实现了高效的端到端检测。在模型架构方面,我们引入了全面的效率和准确性驱动的模型设计策略,改善了性能和效率之间的权衡。这些创新带来了我们的YOLOv10,这是一个全新的实时端到端目标检测器。大量的实验结果表明,YOLOv10与其他先进检测器相比,在性能和延迟方面都取得了state-of-the-art的成果,充分展示了其优越性。

这篇关于YOLOv10 | 无NMS的YOLO | 实时端到端目标检测的新突破的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1001561

相关文章

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

使用Python实现实时金价监控并自动提醒功能

《使用Python实现实时金价监控并自动提醒功能》在日常投资中,很多朋友喜欢在一些平台买点黄金,低买高卖赚点小差价,但黄金价格实时波动频繁,总是盯着手机太累了,于是我用Python写了一个实时金价监控... 目录工具能干啥?手把手教你用1、先装好这些"食材"2、代码实现讲解1. 用户输入参数2. 设置无头浏

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学