SpringBoot操作spark处理hdfs文件的操作方法

2025-01-10 04:50

本文主要是介绍SpringBoot操作spark处理hdfs文件的操作方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser...

SpringBoot操作spark处理hdfs文件

SpringBoot操作spark处理hdfs文件的操作方法

1、导入xgOnM依赖

<!--        spark依赖-->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.12</artifactId>
            <version>3.2.2</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.12</artifactId>
            <version>3.2.2</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-mllib -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-mllib_2.12</artifactId>
            <version>3.2.2</version>
        </dependency>

2、配置spark信息

建立一个配置文件,配置spark信息

import org.apache.spark.SparkConf;
import org.apache.spark.sql.SparkSession;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
//将文件交于spring管理
@Configuration
public class SparkConfig {
    //使用yml中的配置
    @Value("${spark.master}")
    private String sparkMaster;
    @Value("${spark.appName}")
    private String sparkAppName;
    @Value("${hdfs.user}")
    private String hdfsUser;
    @Value("${hdfs.path}")
    private String hdfsPath;
    @Bean
    public SparkConf sparkConf() {
        SparkConf conf = new SparkConf();
        conf.setMaster(sparkMaster);
        conf.setAppName(sparkAppName);
        // 添加HDFS配置
        conf.set("fs.defaultFS", hdfsPath);
        conf.set("spark.hadoop.hdfs.user",hdfsUser);
        return conf;
    }
    @Bean
    public SparkSession sparkSession() {
        return SparkSession.builder()
                .config(sparkConf())
          php      .getOrCreate();
    }
}

3、controller和service

controller类

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import orgjavascript.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import xyz.zzj.traffic_main_code.service.SparkService;
@RestControllehttp://www.chinasem.cnr
@RequestMapping("/spark")
public class SparkController {
    @Autowired
    private SparkService sparkService;
    @GetMapping("/run")
    public String runSparkJob() {
        //读取Hadoop HDFS文件
        String filePath = "hdfs://192.168.44.128:9000/subwayData.csv";
        sparkService.executeHadoopSparkJob(filePath);
        return "Spark job executed successfully!";
    }
}

处理地铁数据的service

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.jsapache.hadoop.fs.Path;
import org.apache.spark.api.Java.JavASParkContext;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.DataTypes;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Service;
import xyz.zzj.traffic_main_code.service.SparkReadHdfs;
import java.io.IOException;
import java.net.URI;
import static org.apache.spark.sql.functions.*;
@Service
public class SparkReadHdfsImpl implements SparkReadHdfs {
    private final SparkSession spark;
    @Value("${hdfs.user}")
    private String hdfsUser;
    @Value("${hdfs.path}")
    private String hdfsPath;
    @Autowired
    public SparkReadHdfsImpl(SparkSession spark) {
        this.spark = spark;
    }
    /**
     * 读取HDFS上的CSV文件并上传到HDFS
     * @param filePath
     */
    @Override
    public void sparkSubway(String filePath) {
        try {
            // 设置Hadoop配置
            JavaSparkContext jsc = JavaSparkContext.fromSparkContext(spark.sparkContext());
            Configuration hadoopConf = jsc.hadoopConfiguration();
            hadoopConf.set("fs.defaultFS", hdfsPath);
            hadoopConf.set("hadoop.user.name", hdfsUser);
            // 读取HDFS上的文件
            Dataset<Row> df = spark.read()
                    .option("header", "true") // 指定第一行是列名
                    .option("inferSchema", "true") // 自动推断列的数据类型
                    .csv(filePath);
            // 显示DataFrame的所有数据
//            df.show(Integer.MAX_VALUE, false);
            // 对DataFrame进行清洗和转换操作
            // 检查缺失值
            df.select("number", "people", "dateTime").na().drop().show();
            // 对数据进行类型转换
            Dataset<Row> df2 = df.select(
                    col("number").cast(DataTypes.IntegerType),
                    col("people").cast(DataTypes.IntegerType),
                    to_date(col("dateTime"), "yyyy年MM月dd日").alias("dateTime")
            );
            // 去重
            Dataset<Row> df3 = df2.dropDuplicates();
            // 数据过滤,确保people列没有负数
            Dataset<Row> df4 = df3.filter(col("people").geq(0));
//            df4.show();
            // 数据聚合,按dateTime分组,统计每天的总客流量
            Dataset<Row> df6 = df4.groupBy("dateTime").agg(sum("people").alias("total_people"));
//            df6.show();
            sparkForSubway(df6,"/time_subwayData.csv");
            //数据聚合,获取每天人数最多的地铁number
            Dataset<Row> df7 = df4.groupBy("dateTime").agg(max("people").alias("max_people"));
            sparkForSubway(df7,"/everyday_max_subwayData.csv");
            //数据聚合,计算每天的客流强度:每天总people除以632840
            Dataset<Row> df8 = df4.groupBy("dateTime").agg(sum("people").divide(632.84).alias("strength"));
            sparkForSubway(df8,"/everyday_strength_subwayData.csv");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    private static void sparkForSubway(Dataset<Row> df6, String hdfsPath) throws IOException {
        // 保存处理后的数据到HDFS
        df6.coalesce(1)
                .write().mode("overwrite")
                .option("header", "true")
                .csv("hdfs://192.168.44.128:9000/time_subwayData");
        // 创建Hadoop配置
        Configuration conf = new Configuration();
        // 获取FileSystem实例
        FileSystem fs = FileSystem.get(URI.create("hdfs://192.168.44.128:9000"), conf);
        // 定义临时目录和目标文件路径
        Path tempDir = new Path("/time_subwayData");
        FileStatus[] files = fs.listStatus(tempDir);
        // 检查目标文件是否存在,如果存在则删除
        Path targetFile1 = new Path(hdfsPath);
        if (fs.exists(targetFile1)) {
            fs.delete(targetFile1, true); // true 表示递归删除
        }
        for (FileStatus file : files) {
            if (file.isFile() && file.getPath().getName().startsWith("part-")) {
                Path targetFile = new Path(hdfsPath);
                fs.rename(file.getPath(), targetFile);
            }
        }
        // 删除临时目录
        fs.delete(tempDir, true);
    }
}

4、运行

  • 项目运行完后,打开浏览器
    • spark处理地铁数据
  • http://localhost:8686/spark/dispose
  • 观察spark和hdfs
    • http://192.168.44.128:8099/
    • http://192.168.44.128:9870/explorer.html#/

SpringBoot操作spark处理hdfs文件的操作方法

到此这篇关于SpringBoot操作spark处理hdfs文件的文章就介绍到这了,更多相关SpringBoot spark处理hdfs文件内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于SpringBoot操作spark处理hdfs文件的操作方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153015

相关文章

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

java中long的一些常见用法

《java中long的一些常见用法》在Java中,long是一种基本数据类型,用于表示长整型数值,接下来通过本文给大家介绍java中long的一些常见用法,感兴趣的朋友一起看看吧... 在Java中,long是一种基本数据类型,用于表示长整型数值。它的取值范围比int更大,从-922337203685477

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

java Long 与long之间的转换流程

《javaLong与long之间的转换流程》Long类提供了一些方法,用于在long和其他数据类型(如String)之间进行转换,本文将详细介绍如何在Java中实现Long和long之间的转换,感... 目录概述流程步骤1:将long转换为Long对象步骤2:将Longhttp://www.cppcns.c

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

SpringBoot服务获取Pod当前IP的两种方案

《SpringBoot服务获取Pod当前IP的两种方案》在Kubernetes集群中,SpringBoot服务获取Pod当前IP的方案主要有两种,通过环境变量注入或通过Java代码动态获取网络接口IP... 目录方案一:通过 Kubernetes Downward API 注入环境变量原理步骤方案二:通过

Springboot整合Redis主从实践

《Springboot整合Redis主从实践》:本文主要介绍Springboot整合Redis主从的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言原配置现配置测试LettuceConnectionFactory.setShareNativeConnect