从零入门激光SLAM(二十)——IESKF代码实现

2024-05-24 22:36

本文主要是介绍从零入门激光SLAM(二十)——IESKF代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好呀,我是一个SLAM方向的在读博士,深知SLAM学习过程一路走来的坎坷,也十分感谢各位大佬的优质文章和源码。随着知识的越来越多,越来越细,我准备整理一个自己的激光SLAM学习笔记专栏,从0带大家快速上手激光SLAM,也方便想入门SLAM的同学和小白学习参考,相信看完会有一定的收获。如有不对的地方欢迎指出,欢迎各位大佬交流讨论,一起进步。博主创建了一个科研互助群Q:772356582,欢迎大家加入讨论。

源码是高博大佬的,网址如下 

slam_in_autonomous_driving/src/ch8 at master · gaoxiang12/slam_in_autonomous_driving · GitHub

下面对代码的逻辑和主要函数进行解析

一、IESKF结构

  • 参数配置/设置状态变量

    struct Options {Options() = default;/// IEKF配置int num_iterations_ = 3;  // 迭代次数double quit_eps_ = 1e-3;  // 终止迭代的dx大小/// IMU 测量与零偏参数double imu_dt_ = 0.01;         // IMU测量间隔double gyro_var_ = 1e-5;       // 陀螺测量标准差double acce_var_ = 1e-2;       // 加计测量标准差double bias_gyro_var_ = 1e-6;  // 陀螺零偏游走标准差double bias_acce_var_ = 1e-4;  // 加计零偏游走标准差/// RTK 观测参数double gnss_pos_noise_ = 0.1;                   // GNSS位置噪声double gnss_height_noise_ = 0.1;                // GNSS高度噪声double gnss_ang_noise_ = 1.0 * math::kDEG2RAD;  // GNSS旋转噪声/// 其他配置bool update_bias_gyro_ = true;  // 是否更新biasbool update_bias_acce_ = true;  // 是否更新bias};// nominal stateSO3 R_;VecT p_ = VecT::Zero();VecT v_ = VecT::Zero();VecT bg_ = VecT::Zero();VecT ba_ = VecT::Zero();VecT g_{0, 0, -9.8};// error stateVec18T dx_ = Vec18T::Zero();// covarianceMat18T cov_ = Mat18T::Identity();// noiseMotionNoiseT Q_ = MotionNoiseT::Zero();GnssNoiseT gnss_noise_ = GnssNoiseT::Zero();Options options_;
    
  • 设置初始条件
    void SetInitialConditions(Options options, const VecT& init_bg, const VecT& init_ba,const VecT& gravity = VecT(0, 0, -9.8)) {BuildNoise(options);options_ = options;bg_ = init_bg;ba_ = init_ba;g_ = gravity;cov_ = 1e-4 * Mat18T::Identity();cov_.template block<3, 3>(6, 6) = 0.1 * math::kDEG2RAD * Mat3T::Identity();}
    //构建噪声模型
    void BuildNoise(const Options& options) {double ev = options.acce_var_;double et = options.gyro_var_;double eg = options.bias_gyro_var_;double ea = options.bias_acce_var_;double ev2 = ev;  // * ev;double et2 = et;  // * et;double eg2 = eg;  // * eg;double ea2 = ea;  // * ea;// set QQ_.diagonal() << 0, 0, 0, ev2, ev2, ev2, et2, et2, et2, eg2, eg2, eg2, ea2, ea2, ea2, 0, 0, 0;double gp2 = options.gnss_pos_noise_ * options.gnss_pos_noise_;double gh2 = options.gnss_height_noise_ * options.gnss_height_noise_;double ga2 = options.gnss_ang_noise_ * options.gnss_ang_noise_;gnss_noise_.diagonal() << gp2, gp2, gh2, ga2, ga2, ga2;
    }
    
  • 使用IMU预测

    bool IESKF<S>::Predict(const IMU& imu) {/// Predict 部分与ESKF完全一样,不再解释assert(imu.timestamp_ >= current_time_);double dt = imu.timestamp_ - current_time_;if (dt > (5 * options_.imu_dt_) || dt < 0) {LOG(INFO) << "skip this imu because dt_ = " << dt;current_time_ = imu.timestamp_;return false;}VecT new_p = p_ + v_ * dt + 0.5 * (R_ * (imu.acce_ - ba_)) * dt * dt + 0.5 * g_ * dt * dt;VecT new_v = v_ + R_ * (imu.acce_ - ba_) * dt + g_ * dt;SO3 new_R = R_ * SO3::exp((imu.gyro_ - bg_) * dt);R_ = new_R;v_ = new_v;p_ = new_p;Mat18T F = Mat18T::Identity();F.template block<3, 3>(0, 3) = Mat3T::Identity() * dt;F.template block<3, 3>(3, 6) = -R_.matrix() * SO3::hat(imu.acce_ - ba_) * dt;F.template block<3, 3>(3, 12) = -R_.matrix() * dt;F.template block<3, 3>(3, 15) = Mat3T::Identity() * dt;F.template block<3, 3>(6, 6) = SO3::exp(-(imu.gyro_ - bg_) * dt).matrix();F.template block<3, 3>(6, 9) = -Mat3T::Identity() * dt;cov_ = F * cov_ * F.transpose() + Q_;current_time_ = imu.timestamp_;return true;
    }
    
  • 迭代观测模型

    using CustomObsFunc = std::function<void(const SE3& input_pose, Eigen::Matrix<S, 18, 18>& HT_Vinv_H,Eigen::Matrix<S, 18, 1>& HT_Vinv_r)>;
    // 使用自定义观测函数更新滤波器
    bool IESKF<S>::UpdateUsingCustomObserve(IESKF::CustomObsFunc obs) {// H阵由用户给定// 保存当前的旋转矩阵SO3 start_R = R_;Eigen::Matrix<S, 18, 1> HTVr;Eigen::Matrix<S, 18, 18> HTVH;Eigen::Matrix<S, 18, Eigen::Dynamic> K;Mat18T Pk, Qk;//进入残差更新循环for (int iter = 0; iter < options_.num_iterations_; ++iter) {// 调用用户提供的观测函数//GetNominalSE3()获取当前名义状态位姿
    //SE3 GetNominalSE3() const { return SE3(R_, p_); }//HTVH卡尔曼更新步骤中用于修正预测的协方差矩阵//HTVr卡尔曼更新步骤中用于修正预测的状态变量obs(GetNominalSE3(), HTVH, HTVr);// 投影协方差矩阵PMat18T J = Mat18T::Identity();J.template block<3, 3>(6, 6) = Mat3T::Identity() - 0.5 * SO3::hat((R_.inverse() * start_R).log());Pk = J * cov_ * J.transpose();// 卡尔曼更新Qk = (Pk.inverse() + HTVH).inverse();   // 计算更新后的协方差矩阵Qkdx_ = Qk * HTVr; // 计算状态增量dx_// LOG(INFO) << "iter " << iter << " dx = " << dx_.transpose() << ", dxn: " << dx_.norm();//将增量dx_合并到名义变量中Update();// 检查增量的范数是否小于终止阈值if (dx_.norm() < options_.quit_eps_) {break;}}// 更新协方差矩阵update Pcov_ = (Mat18T::Identity() - Qk * HTVH) * Pk;// 再次投影协方差矩阵PMat18T J = Mat18T::Identity();Vec3d dtheta = (R_.inverse() * start_R).log();J.template block<3, 3>(6, 6) = Mat3T::Identity() - 0.5 * SO3::hat(dtheta);cov_ = J * cov_ * J.inverse();// 重置状态增量dx_.setZero();return true;
    }

详情请见...

 从零入门激光SLAM(二十)——IESKF代码解释 - 古月居 (guyuehome.com)

这篇关于从零入门激光SLAM(二十)——IESKF代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/999725

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too