【Text2SQL 经典模型】X-SQL

2024-05-24 22:36

本文主要是介绍【Text2SQL 经典模型】X-SQL,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文:X-SQL: reinforce schema representation with context

⭐⭐⭐⭐

Microsoft, arXiv:1908.08113

X-SQL 与 SQLova 类似,使用 BERT style 的 PLM 来获得 representation,只是融合 NL question 和 table schema 的信息的方式不太一样,也就是在利用 BERT-style 得到的 representation 后进一步的加工方式不一样。

X-SQL 先由 BERT-style PLM 生成 question 和 schema 的 representation,然后对 schema representation 做上下文信息的进一步加强,再交由 6 个 sub-task 分别构建出 SQL 的一部分,最终得到完整的 SQL

一、X-SQL

整个架构包含三层:sequence encoder、context enhancing schema encoder 和 output layer。

1.1 Sequence Encoder:得到 PLM 的 representation

将 question 和 table headers 拼装成下面的形式(与 SQLova 的类似):

  • 有一个特殊的空 column 被附加到每个 table schema 最后,也就是实际最后一个 column 后面会在加一个 [EMPTY]
  • [CLS] 重命名为 [CTX],用来强调这里是捕获上下文信息,而非用于下游任务的 representation
  • SQLova 中的 segment embeddings 被替换为 type embeddings,这是我们为四种 types 学习的 embeddings:question、categorial column、numerical column 和 special empty column

另外,这里的 PLM 不是使用 BERT-Large 初始化的,而是使用 MT-DNN 初始化的,它与 BERT 架构相同,只是在多个 GLUE 任务上做过训练,从而能够得到更好的用于下游任务的 representation。

经过这一层,我们为 question 和 table schema 的每个 token 都利用 BERT-style PLM 生成一个 hidden state。

1.2 Context Enhanced Schema Encoder:加强 schema representation

在上一层 seq encoder 中,我们为 question 和 table headers 的每个 token 都得到一个 hidden state vector,在这一层,我们的 context enchanced schema encoder 通过用 h [ C T X ] h_{[CTX]} h[CTX] 来加强前面 encoder 的输出,从而得到每个 column 的一个新的 representation h C i h_{C_i} hCi,它代表 column i 的新 representation。

论文认为,尽管 BERT style 的 sequence encoder 在它的 output 中也捕捉到了一定的 context,但是这种 context influence 受限于 self-attention 的机制(它倾向于关注某个特定 region 从而缺少全局信息),所以这里使用带有全局信息的 [CTX] 的 hidden state 来加强 representation。

这里的具体做法就是,将 column i 的所有 token 的 hidden state 和 h [ C T X ] h_{[CTX]} h[CTX] 一起输入到一个 Attention 层中,得到加强后的新的 column i i i 的 representation:

经过这一层 encoder,我们得到了上下文增强的 schema representation,也就是每个 column 的新 representation

这一步的做法也体现出 X-SQL 与 SQLova 的区别,这一层的 “context enchanced schema encoder” 和 SQLova 中引入的 column-attention 机制都是为了相同的目标:更好地对齐 question 和 table schema,但两者的实现思路却不同:

  • column-attention 通过将 column 作为条件来改变 question 的编码
  • context enchanced schema encoder 认为 BERT-style 的 encoder 已经足够好了,只是基于此并试图使用 [CTX] 中捕获的全局上下文信息来得到一个更好的 representation。

1.3 Output Layer:完成各 sub-task 生成 SQL

这一层借助 sequence encoder 输出的 hidden states 和 context enchanced schema encoder 输出的 h C 1 h_{C_1} hC1 h C 2 h_{C_2} hC2、…、 h [ E M P T Y ] h_{[EMPTY]} h[EMPTY] 来生成 SQL。这里的思路也是基于 SQL sketch 并填充 slots。

这一步的任务被分解成了 6 个子任务,每个子任务预测最终 SQL 程序的一部分。

1.3.1 用来修正 schema representation 的 sub-network

首先,这里引入了一个 sub-network 用来调整 schema representation with context,具体来说,就是分别对 H [ C T X ] H_{[CTX]} H[CTX] H C i H_{C_i} HCi 做一个仿射变换,再加起来经过一个 LayerNorm 得到 r C i r_{C_i} rCi(column i 一个修正后的 representation),图示如下:

公式如下:

注意,这个 sub-network 在每个 sub-task 中都是独立训练的,也就是每个 sub-task 得到的 r C i r_{C_i} rCi 是不同的,这也体现了这个 sub-network 就是针对一个具体 task 来修正 schema representation

之后,各个 sub-task 就可以基于我们之前得到的 vectors 和 r C i r_{C_i} rCi 来做了。

1.3.2 sub-task 1:S-COL

S-COL 任务是预测 SELECT 语句中的 columns,这其实就是计算各个 columns 的一个概率,计算方式如下:

20240524214322

可以看到,这里只使用了 r C i r_{C_i} rCi,另外的 W W W 是一个可训练参数。

1.3.3 sub-task 2:S-AGG

直觉来说,aggregator 的选择会依赖所选中的 column 的类型,比如 aggregator MIN 只能被用于数字类型的 column。为了实现这个直觉,这个 task 在做 aggregator 分类时,会利用到 column type 的 embedding:

20240524214556

具体公式可以参考原论文

1.3.4 其他 sub-task

其他 sub-task 共同确定出 WHERE 部分,这里可以具体参考原论文,整体思路是差不多的。

二、总结

通过以上改进,X-SQL 在表现 WikiSQL 上的表现提升到 90% 以上,超过了 SQLova:

本文对 BERT-style 生成的 representation 的进一步的加工利用值得研究学习。

这篇关于【Text2SQL 经典模型】X-SQL的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/999723

相关文章

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

解密SQL查询语句执行的过程

《解密SQL查询语句执行的过程》文章讲解了SQL语句的执行流程,涵盖解析、优化、执行三个核心阶段,并介绍执行计划查看方法EXPLAIN,同时提出性能优化技巧如合理使用索引、避免SELECT*、JOIN... 目录1. SQL语句的基本结构2. SQL语句的执行过程3. SQL语句的执行计划4. 常见的性能优

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

2025版mysql8.0.41 winx64 手动安装详细教程

《2025版mysql8.0.41winx64手动安装详细教程》本文指导Windows系统下MySQL安装配置,包含解压、设置环境变量、my.ini配置、初始化密码获取、服务安装与手动启动等步骤,... 目录一、下载安装包二、配置环境变量三、安装配置四、启动 mysql 服务,修改密码一、下载安装包安装地

MySQL CTE (Common Table Expressions)示例全解析

《MySQLCTE(CommonTableExpressions)示例全解析》MySQL8.0引入CTE,支持递归查询,可创建临时命名结果集,提升复杂查询的可读性与维护性,适用于层次结构数据处... 目录基本语法CTE 主要特点非递归 CTE简单 CTE 示例多 CTE 示例递归 CTE基本递归 CTE 结

MySQL多实例管理如何在一台主机上运行多个mysql

《MySQL多实例管理如何在一台主机上运行多个mysql》文章详解了在Linux主机上通过二进制方式安装MySQL多实例的步骤,涵盖端口配置、数据目录准备、初始化与启动流程,以及排错方法,适用于构建读... 目录一、什么是mysql多实例二、二进制方式安装MySQL1.获取二进制代码包2.安装基础依赖3.清

详解MySQL中JSON数据类型用法及与传统JSON字符串对比

《详解MySQL中JSON数据类型用法及与传统JSON字符串对比》MySQL从5.7版本开始引入了JSON数据类型,专门用于存储JSON格式的数据,本文将为大家简单介绍一下MySQL中JSON数据类型... 目录前言基本用法jsON数据类型 vs 传统JSON字符串1. 存储方式2. 查询方式对比3. 索引