工作站虚拟化:RTX A5000的图形工作站实现多用户独立运行Siemens NX 设计软件

本文主要是介绍工作站虚拟化:RTX A5000的图形工作站实现多用户独立运行Siemens NX 设计软件,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、背景

Siemens NX 是由西门子数字工业软件(Siemens Digital Industries Software)开发的一款先进的集成计算机辅助设计(CAD)、计算机辅助制造(CAM)和计算机辅助工程(CAE)软件。它广泛应用于产品设计、工程分析和制造等领域。NX 的前身是 Unigraphics,是业界知名的三维设计和仿真软件。

公司设计部需要使用大型的CAD/CAM软件进行设计。运行 Siemens NX 、ZWCAD、Solidworks等大型设计软件。

高端的工作站配置了 i9 13900KF 和 NVIDIA RTX A5000显卡。终端的工作站,配置了 A2000的显卡。 还有一些相对老旧的工作站配置 Q2000/Q2200 的显卡。 实际工作中,设计师的工作是分阶段的。 有些设计任务需要高端的工作站,另一些任务,使用中低端的工作站也能胜任。

这些图形工作站的使用存在如下一些问题:

1、资源利用率低。 比如将最高配置的工作站分配给某些员工,并不能充分发挥设备的作用。设备的实际利用率很低。其他员工如果临时需要高性能的机器,很难进行资源的调配。

2、信息安全问题。 设计图纸是企业的关键核心资产。图纸的丢失和泄密,会给企业造成巨大的损失。直接让员工使用图形工作站,面临泄密和数据丢失的风险。

3、远程设计需求。公司希望员工离开办公室,也能进行远程设计。比如回家、出差时,也能进行设计。另外,设计图纸可能需要提供给供应商,或者提供给客户进行评审或者联合设计。 如果在本地工作站运行CAD/CAM 无法满足远程设计的业务需求。

二、工作站虚拟化介绍

ShareStation工作站虚拟化是利用最新的GPU虚拟化技术,让用户通过客户端连接工作站,实现多个用户共享使用图形工作站。满足远程设计需求和信息安全需求。

我们选择一台高配的工作站进行虚拟化改造。工作站配置如下:

CPU:intel i9:13900KF
内存:64G
显卡1:nvidia RTXA5000-24G
显卡2:A2000
硬盘:1TB NVME

上述工作站的成本接近3万元。

工作站虚拟化的软件系统采用 企业级 开源虚拟化平台 Proxmox VE 和 多平台、分布式、一体化的云桌面软件系统 DoraCloud 。

三、硬件安装和BIOS配置

为了正常启用显卡的虚拟化功能,硬件安装有如下要点:

1、A5000显卡不能接显示器。  A5000用作虚拟化显卡,不能用于输出,因此不能接显示器。这时需要有另一个显卡接显示器。

2、BIOS 开启 SR-IOV(也叫 VT-D),开启 Above 4G MMIO BIOS Assignment

四、工作站虚拟化的软件安装

1、安装Proxmox VE 7.x

安装Proxmox VE 7.x 参考 我之前的文章。《https://www.cnblogs.com/doracloud/p/17203221.html》

2、安装和配置NVIDIA GRID vGPU

RTX A5000 GPU有多种工作模式。默认情况下是支持显示输出的。为了启用vGPU,需要关闭显示输出功能。 使用 displaymodeselector 工具,可以对显卡进行配置。displaymodeselector的使用方法,也参见上面的文章。

如果 A5000 已经接了显示器,并且作为工作站的默认显示输出,此时再修改显示A5000的工作模式,就会工作站无法点亮显示器,无法正常进入本地操作。因此前面提到的硬件准备时,必须要有另外的显卡(独立显卡或者集成显卡)作为工作站的默认显示输出。

安装 NVIDIA的vGPU驱动,可以使用这个脚本。  https://gitee.com/deskpool/proxmox-vgpu

该命令的使用方法如下:

登陆 Proxmox VE的命令。 gpu01.sh 更新Proxmox VE的源。 gpu02.sh 启用 IOMMU。

apt install git-core -y
git clone https://gitee.com/deskpool/proxmox-vgpu
./proxmox-vgpu/nvidia/gpu01.sh
./proxmox-vgpu/nvidia/gpu02.sh

 Proxmox VE 系统会重启,重启后,先检查 IOMMU是否启用。

root@pvehost:~# dmesg |grep IOMMU
[    0.046588] DMAR: IOMMU enabled

 然后执行gpu03.sh,安装 grid 16.4的驱动。

./proxmox-vgpu/nvidia/gpu03.sh

 Proxmox VE 系统再次重启后,进入 Proxmox VE,通过 nvidia-smi 命令验证,可以看到显卡驱动已经安装。

root@pvehost:~# nvidia-smi
Fri May 24 16:20:22 2024       
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.161.05             Driver Version: 535.161.05   CUDA Version: N/A      |
|-----------------------------------------+----------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |
|                                         |                      |               MIG M. |
|=========================================+======================+======================|
|   0  NVIDIA RTX A5000               On  | 00000000:01:00.0 Off |                    0 |
| 30%   46C    P8              29W / 230W |  22272MiB / 23028MiB |      0%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   1  NVIDIA RTX A2000 12GB          On  | 00000000:04:00.0 Off |                    0 |
| 30%   42C    P8              12W /  70W |      0MiB / 11514MiB |      0%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------++---------------------------------------------------------------------------------------+
| Processes:                                                                            |
|  GPU   GI   CI        PID   Type   Process name                            GPU Memory |
|        ID   ID                                                             Usage      |
|=======================================================================================|
|    0   N/A  N/A    657157    C+G   vgpu                                       7424MiB |
|    0   N/A  N/A    657163    C+G   vgpu                                       7424MiB |
|    0   N/A  N/A    657623    C+G   vgpu                                       7424MiB |
+---------------------------------------------------------------------------------------+

接下来,你输入  mdevctl ,查看 vGPU 类型(vGPU Profile),如果是 Ampere架构之前的显卡,此时已经能够工作。 但是对Ampere架构的A5000显卡,还需要一步,通过命令开启SR-IOV。通过命令 sriov-manage -e 启用SR-IOV。比如笔者的显卡地址为  01:00.0,命令如下:

/usr/lib/nvidia/sriov-manage -e 0000:01:00.0


执行该命令之后,mdevctl types 命令可以输出 vGPU的类型,即表明vGPU 驱动已经配置成功。启用 SR-IOV 的命令在系统重启后,将失效。 因此需要创建一个 后台服务,在系统每次启动时,自动启用显卡的 SR-IOV。 脚本如下:

​
cat >/etc/systemd/system/sriov.service <<EOF
[Unit]
Description=Script to enable SR-IOV on boot[Service]
Type=simple
#start SR-IOV
ExecStart=/usr/lib/nvidia/sriov-manage -e 0000:01:00.0
Restart=on-failure[Install]
WantedBy=multi-user.targetEOFsystemctl daemon-reloadsystemctl enable sriov.servicesystemctl start sriov.service
​

然后重启服务器,如果可以通过 mdevctl types 查看到 vGPU的类型,即表明服务器配置好了vGPU。

 
​root@pvehost:~# mdevctl types |more
0000:01:00.4nvidia-657Available instances: 0Device API: vfio-pciName: NVIDIA RTXA5000-1BDescription: num_heads=4, frl_config=45, framebuffer=1024M, max_resolution=5120x2880, max_instance=24nvidia-658Available instances: 0Device API: vfio-pciName: NVIDIA RTXA5000-2BDescription: num_heads=4, frl_config=45, framebuffer=2048M, max_resolution=5120x2880, max_instance=12nvidia-659Available instances: 0Device API: vfio-pciName: NVIDIA RTXA5000-1QDescription: num_heads=4, frl_config=60, framebuffer=1024M, max_resolution=5120x2880, max_instance=24nvidia-660Available instances: 0Device API: vfio-pciName: NVIDIA RTXA5000-2QDescription: num_heads=4, frl_config=60, framebuffer=2048M, max_resolution=7680x4320, max_instance=12nvidia-661Available instances: 0Device API: vfio-pciName: NVIDIA RTXA5000-3QDescription: num_heads=4, frl_config=60, framebuffer=3072M, max_resolution=7680x4320, max_instance=8nvidia-662Available instances: 0Device API: vfio-pciName: NVIDIA RTXA5000-4QDescription: num_heads=4, frl_config=60, framebuffer=4096M, max_resolution=7680x4320, max_instance=6nvidia-663Available instances: 0Device API: vfio-pciName: NVIDIA RTXA5000-6QDescription: num_heads=4, frl_config=60, framebuffer=6144M, max_resolution=7680x4320, max_instance=4
....................................
....................................
​

3、安装和配置 DoraCloud 

DoraCloud for Proxmox VE的安装配置教程很多。可以参考官网的文档。
ShareStation工作站虚拟化部署

4、安装 CAD 软件

通过编辑DoraCloud桌面模板,安装  NX 软件,以及常用的办公软件。 

为了达到更好的视觉效果,在模板中安装朵拉云桌面协议 DDP Server。

模板制作完毕后,创建桌面池,把桌面池的vGPU类型设置成 8Q,这样工作站可以虚拟出三台 显存配置为8G的虚拟桌面。  桌面池协议可以选择 RDP 或者 DDP。

 根据桌面池,发放了3个桌面,每个桌面具有 8G 的显存。 

 五、应用测试 和 效果

可以通过多种客户端访问虚拟工作站。

1、DoraClient 应用程序。 包括 Windows 版本 和 Linux 版本。

2、朵拉云科技的云终端产品,比如 JC36云终端 、DC20 云终端。

3、x86 机器,安装 DoraOS 瘦客户机软件,改造成云终端。 

为了达到最佳效果,推荐采用支持 DDP 协议的云终端访问 DoraCloud。 目前只有 DoraOS 或者 x86 的云终端支持DDP 协议。

下图为云终端连接虚拟工作在的效果,桌面上运行了 Siemens PLM Software NX,以及中望CAD 2021 。

采用基于DoraCloud的工作站虚拟化方案 ,可以将图形工作站的专业显卡进行灵活的切分。 比如进行复杂项目时,一台工作站可以划分为3份,人均配置8G显存,满足大型应用的需求。进行一些简单的项目时,工作站可以切分为8份,人均配置3G显存,满足团队多个成员的设计需求。 既避免了资源的浪费,也解决了低端工作站性能不足的问题。

这篇关于工作站虚拟化:RTX A5000的图形工作站实现多用户独立运行Siemens NX 设计软件的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/999137

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin