基于动态规划算法的DNA序列比对函数,给出两条序列(v和w)的打分矩阵

2024-05-24 11:36

本文主要是介绍基于动态规划算法的DNA序列比对函数,给出两条序列(v和w)的打分矩阵,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.什么是动态规划算法

1.1总体思想

·动态规划算法与分治法类似,基本思想也是将待求解的问题分成若干个子问题

·经过分解得到的子问题往往不是互相独立的,有些子问题被重复计算多次

·如果能够保存已解决的子问题答案,在需要时再找出来已求得的答案,就可以避免大量重复计算,从而得到多项式时间算法(备忘录)

1.2使用动态规划求解的问题需要具备的基本要素

1)重复子问题

·递归算法求解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次,这种性质被称为子问题的重叠性质

·动态规划算法,对每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要解此子问题时,只是简单地用常数时间查看一下结果。

·通常不同的子问题个数随问题的大小呈多项式增长,用动态规划算法只需要多项式时间,从而获得较高的解题效率。

2)最优子结构

·一个问题的最优解包含着其子问题的最优解,这种性质称为最优子结构性质

·分析问题的最优子结构性质,首先假设由问题的最优解导出的子问题的解不是最优,然后再设法说明在这个假设下可构造出比原问题最优解更好的解,从而导致矛盾

·利用问题的最优子结构性质,以自底向上的方式递归地从子问题的最优解逐步构造出整个问题的最优解

·最优子结构是一个问题能用动态规划算法求解的前提

1.3动态规划求解的基本步骤

1)找出最优解的性质,并刻画其结构特征

2)递归地定义最优质

3)以自底向上的方式计算出最优值

4)根据计算最优值时得到的信息,构造最优解

二.打分矩阵代码

import random  # 1. 生成一个指定长度的随机DNA序列  
def generate_dna(length):  dna_bases = 'ACGT'  # DNA的四个碱基  sequence = ''  # 初始化空序列  for _ in range(length):  # 循环length次  sequence += random.choice(dna_bases)  # 每次从四个碱基中随机选一个添加到序列中  return sequence  # 返回生成的DNA序列  # 2. 在DNA序列中随机位置插入一个可能突变的motif  
def insert_motif(dna, motif, mutation_rate):  mutated_motif = ''  # 初始化突变的motif为空字符串  for base in motif:  # 遍历motif中的每个碱基  if random.random() < mutation_rate:  # 如果随机数小于突变率  mutated_motif += random.choice('ACGT')  # 则该位置碱基随机突变  else:  mutated_motif += base  # 否则保持原样  insert_point = random.randint(0, len(dna))  # 在DNA序列中随机选择一个插入点  return dna[:insert_point] + mutated_motif + dna[insert_point:]  # 插入突变的motif  # 3. 生成多条带有随机插入motif的DNA序列  
def generate_sequences(num_sequences, dna_length, motif_length, mutation_rate):  sequences = []  # 初始化一个空列表来存储生成的序列  motif = generate_dna(motif_length)  # 生成一个随机的motif  for _ in range(num_sequences):  # 循环生成指定数量的序列  dna = generate_dna(dna_length)  # 生成一个DNA序列  dna_with_motif = insert_motif(dna, motif, mutation_rate)  # 插入motif  sequences.append(dna_with_motif)  # 将序列添加到列表中  return sequences  # 返回生成的序列列表  # 使用函数生成序列并打印  
sequences = generate_sequences(5, 20, 5, 0.1)  
for seq in sequences:  print(seq)

三.编写一个函数,生成m条DNA序列,每条序列长度为k,然后对每条序列随机插入一个长度为L的motif,motif的突变率为n

import random  # 1. 生成一个指定长度的随机DNA序列  
def generate_dna(length):  dna_bases = 'ACGT'  # DNA的四个碱基  sequence = ''  # 初始化空序列  for _ in range(length):  # 循环length次  sequence += random.choice(dna_bases)  # 每次从四个碱基中随机选一个添加到序列中  return sequence  # 返回生成的DNA序列  # 2. 在DNA序列中随机位置插入一个可能突变的motif  
def insert_motif(dna, motif, mutation_rate):  mutated_motif = ''  # 初始化突变的motif为空字符串  for base in motif:  # 遍历motif中的每个碱基  if random.random() < mutation_rate:  # 如果随机数小于突变率  mutated_motif += random.choice('ACGT')  # 则该位置碱基随机突变  else:  mutated_motif += base  # 否则保持原样  insert_point = random.randint(0, len(dna))  # 在DNA序列中随机选择一个插入点  return dna[:insert_point] + mutated_motif + dna[insert_point:]  # 插入突变的motif  # 3. 生成多条带有随机插入motif的DNA序列  
def generate_sequences(num_sequences, dna_length, motif_length, mutation_rate):  sequences = []  # 初始化一个空列表来存储生成的序列  motif = generate_dna(motif_length)  # 生成一个随机的motif  for _ in range(num_sequences):  # 循环生成指定数量的序列  dna = generate_dna(dna_length)  # 生成一个DNA序列  dna_with_motif = insert_motif(dna, motif, mutation_rate)  # 插入motif  sequences.append(dna_with_motif)  # 将序列添加到列表中  return sequences  # 返回生成的序列列表  # 使用函数生成序列并打印  
sequences = generate_sequences(5, 20, 5, 0.1)  
for seq in sequences:  print(seq)

四.对生成的已插入突变motif的序列集合,编写一套函数,寻找其中的motif,可指定motif长度;

# 定义一个名为 find 的函数,它接受两个参数:  
# sequence_set 是一个包含多个 DNA 序列的列表  
# motif_length 是我们想要查找的子序列(也称为 motif)的长度  
def find(sequence_set, motif_length):    # 初始化一个空集合 motifs,用于存储找到的所有唯一的 motif  motifs = set()    # 遍历 sequence_set 中的每一条序列  for sequence in sequence_set:    # 对于每一条序列,我们从其第一个碱基开始,直到剩下的碱基数量少于 motif_length 为止  # 这样确保我们可以从序列中提取出完整长度的 motif  for i in range(len(sequence) - motif_length + 1):    # 从当前位置 i 开始,提取长度为 motif_length 的子序列  motif = sequence[i:i+motif_length]    # 将提取到的 motif 添加到 motifs 集合中  # 由于 motifs 是一个集合,所以重复的 motif 会被自动去除  motifs.add(motif)    # 函数返回包含所有唯一 motif 的集合  return motifs    # 测试数据:一个包含三条 DNA 序列的列表和一个 motif 长度值  
sequence_set = ['ACGTTAGC', 'GTATCGAG', 'CGTACGTA']    
motif_length = 4    # 调用 find 函数,传入测试数据,并将返回的结果存储在变量 motifs 中  
motifs = find(sequence_set, motif_length)    
# 打印出找到的所有唯一 motif  
print(motifs)

五.对生成的已插入突变motif的序列集合,编写一套函数,基于分支界定法寻找指定长度的motif,并与遍历法比较计算效率

import itertools  
import time  # 计算motif在序列中的得分  
def calculate_score(motif, sequences):  score = 0  for seq in sequences:  min_distance = float('inf')  for i in range(len(seq) - len(motif) + 1):  distance = sum(motif[j] != seq[i + j] for j in range(len(motif)))  min_distance = min(min_distance, distance)  score += min_distance  return score  # 分支界定法  
def find_motif_branch_bound(sequences, motif_length):  best_motif = None  best_score = float('inf')  def search(motif, depth):  nonlocal best_motif, best_score  if depth == motif_length:  score = calculate_score(motif, sequences)  if score < best_score:  best_score = score  best_motif = motif  return  for base in 'ACGT':  search(motif + base, depth + 1)  start_time = time.time()  search('', 0)  end_time = time.time()  return best_motif, end_time - start_time  # 遍历法  
def find_motif_brute_force(sequences, motif_length):  best_motif = None  best_score = float('inf')  start_time = time.time()  for motif in itertools.product('ACGT', repeat=motif_length):  motif = ''.join(motif)  score = calculate_score(motif, sequences)  if score < best_score:  best_score = score  best_motif = motif  end_time = time.time()  return best_motif, end_time - start_time  # 示例序列集合和motif长度  
sequences = ['ACGTAGCTAG', 'ACGGATCGTA', 'TAGCTAGCTA', 'TCGATCGATT']  
motif_length = 3  # 使用分支界定法寻找motif  
motif_bb, time_bb = find_motif_branch_bound(sequences, motif_length)  
print(f"Branch and Bound Motif: {motif_bb}, Time: {time_bb:.4f}s")  # 使用遍历法寻找motif  
motif_bf, time_bf = find_motif_brute_force(sequences, motif_length)  
print(f"Brute Force Motif: {motif_bf}, Time: {time_bf:.4f}s")

这篇关于基于动态规划算法的DNA序列比对函数,给出两条序列(v和w)的打分矩阵的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/998294

相关文章

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

MySQL字符串常用函数详解

《MySQL字符串常用函数详解》本文给大家介绍MySQL字符串常用函数,本文结合实例代码给大家介绍的非常详细,对大家学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql字符串常用函数一、获取二、大小写转换三、拼接四、截取五、比较、反转、替换六、去空白、填充MySQL字符串常用函数一、

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

全面掌握 SQL 中的 DATEDIFF函数及用法最佳实践

《全面掌握SQL中的DATEDIFF函数及用法最佳实践》本文解析DATEDIFF在不同数据库中的差异,强调其边界计算原理,探讨应用场景及陷阱,推荐根据需求选择TIMESTAMPDIFF或inte... 目录1. 核心概念:DATEDIFF 究竟在计算什么?2. 主流数据库中的 DATEDIFF 实现2.1