Base上关于CMS、GC碎片、大缓存的一种解决方案:Bucket Cache----没看懂

2024-05-24 09:38

本文主要是介绍Base上关于CMS、GC碎片、大缓存的一种解决方案:Bucket Cache----没看懂,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍BucketCache前,先对HBase的Cache做个介绍: 
一.HBase在读取时,会以Block为单位进行cache,用来提升读的性能; 


二.Block可以分类为DataBlock(默认大小64K,存储KV)、BloomBlock(默认大小128K,存储BloomFilter数据)、IndexBlock(默认大小128K,索引数据,用来加快Row所在DataBlock的定位) 




三.对于一次随机读,Block的访问顺序为BloomBlock、IndexBlock、DataBlock,如果Region下面的StoreFile数目为2个,那么一次随机读至少访问2次BloomBlock+1次IndexBlock+1次DataBlock 


四.我们通常将BloomBlock和IndexBlock统称为MetaBlock,MetaBlock线上系统中基本命中率都是100% 


五.Block的cache命中率对HBase的读性能影响十分大,所以DataBlockEncoding将KV在内存中进行压缩,对于单行多列和Row相似的场景,可以提高内存使用率,增加读性能 


六.HBase中管理缓存的Block的类为BlockCache,其实现目前主要是下面三种: 



6.1 LruBlockCache,默认的BlockCache实现,也是目前使用的BlockCache,使用一个HashMap维护Block Key到Block的映射,采用严格的LRU算法来淘汰Block,初始化时会指定容量大小,当使用量达到85%的时候开始淘汰block至75%的比例。 
优点:直接采用jvm提供的HashMap来管理Cache,简单可依赖;内存用多少占多少,JVM会帮你回收淘汰的BlOCK占用的内存 
缺点: 
1.一个Block从被缓存至被淘汰,基本就伴随着Heap中的位置从New区晋升到Old区 
2.晋升在Old区的Block被淘汰后,最终由CMS进行垃圾回收,随之带来的是Heap碎片 
3.因为碎片问题,随之而来的是GC时晋升失败的FullGC,我们的线上系统根据不同的业务特点,因为这个而发生FullGC的频率,有1天的,1周的,1月半年的都有。对于高频率的, 

在运维上通过在半夜手工触发FullGC来缓解 
4.如果缓存的速度比淘汰的速度快,很不幸,现在的代码有OOM的风险(这个可以修改下代码避免) 



6.2 SlabCache,针对LruBlockCache的碎片问题一种解决方案,使用堆外内存,处于实验性质,真实测试后,我们定位为不可用。说下它的原理:它由多个SingleSizeCache组成(所谓SingleSizeCache,就是只缓存固定大小的block,其内部维护一个ByteBuffer List,每个ByteBuffer的空间都是一样的,比如64K的SingleSizeCache,ByteBuffer的空间都是64K,cache Block时把Block的内容复制到ByteBuffer中,所以block的大小必须小于等于64K才能被这个SingleSizeCache缓存;淘汰block的时候只需要将相应的ByteBuffer标记为 

空闲,下次cache的时候对其上的内存直接进行覆盖就行了),cache Block的时候,选择一个小于且最接近的SingleSizeCache进行缓存,淘汰block亦此。由于SingleSize的局限性,其使用上和LruBlockCache搭配使用,叫做DoubleBlockCache,cache block的时候LruBlockCache和SlabCache都缓存一份,get block的时候顺序为LruBlockCache、SlabCache,如果只有SlabCache命中,那么再将block缓存到LruBlockCache中(本人觉得它的这个设计很费,你觉得呢) 

优点:其思想:申请固定内存空间,Block的读写都在这片区域中进行 
缺点: 
1.cache block和 get block的时候,需要内存复制 
2.SingleSizeCache的设计,导致内存使用率很低 
3.与LruBlockCache搭配使用不合理,导致所有的block都会去LruBlockCache中逗留一下,结果是CMS和碎片都不能有所改善 


6.3 BucketCache,可以看成是对SlabCache思想在实现上的一种改进及功能扩展,其优点是解决LruBlockCache的缺点及支持面向高性能读的大缓存空间. 



1.何谓大缓存?缓存Block的存储介质不再仅仅依赖在内存上,而是可以选择为Fusion-io、SSD等高速磁盘,我们称之为二级缓存 



2.何谓Bucket?我们将缓存空间划分为一个个的Bucket,每个Bucket都贴上一个size标签,将Block缓存在最接近且小于size的bucket中(和SingleSizeCache很相似) 



3.怎么解决CMS 碎片问题?Block存储在Bucket中,而每个Bucket的物理存储是不变的,也就是说系统刚启动的时候,我们就申请了一堆Bucket内存空间,而这些内存空间是一直在Old区,block的Get/Cache动作只是对这片空间的访问/覆写,CMS/碎片自然大大减少 



4.怎么使用?上面的描述指出BucketCache可以有两种用法: 
4.1 与LruBlockCache搭配,作为主要的内存cache方案使用 




 


4.2 作为二级缓存使用,将Block缓存在我们的高速盘(Fusion-IO)中 




 


5.BucketCache中的Cache/Get Block逻辑? 



 



 



简单地描述下: 
CacheBlock的时候,将Block放在一个RAMMap和一个Queue中,然后WriterThread异步从Queue中remove Block写入到IOEngine(内存或高速盘)中,并将BlockKey及其位置、长度等信息记录在backingMap 
GetBlock的时候,先访问RAMMap,然后访问backingMap获取block的位置及长度,从IOEngine读取数据 


6.Block在IOEngine中的位置是怎么分配的? 




 


我们将物理空间划分为一堆等大的Bucket,每一个Bucket有一个序号及一个size标签,于是Block所在bucket的序号及其在bucket中的offset与block在物理空间的offset就形成了一一对应。我们通过BucketAllocator为指定大小的Block寻找一个Bucket进行存放,于是就得到了其在物理空间上的位置。 



上图描述了BucketAllocator对于Bucket的组织管理: 

6.1 每个Bucket都有一个size标签,目前对于size的分类,是在启动时候就确定了,如默认的有(8+1)K、(16+1)K、(32+1)K、(40+1)K、(48+1)K、(56+1)K、(64+1)K、(96+1)K ... (512+1)K 


6.2 相同size标签的Bucket由同一个BucketSizeInfo管理 


6.3 Bucket的size标签可以动态调整,比如64K的block数目比较多,65K的bucket被用完了以后,其他size标签的完全空闲的bucket可以转换成为65K的bucket,但是至少保留一个该size的bucket 




6.4 如果最大size的bucket为513K,那么超过这个大小的block无法存储,直接拒绝 


6.5 如果某个size的bucket用完了,那么会依照LRU算法触发block淘汰 



问题: 

6.6.如果系统一开始都是某个size的block,突然变成另外个size的block(不能存在同个size的bucket中),根据6.5不是会不停地进行淘汰算法? 
是的,但是由于淘汰是异步的,影响不大,而且随着淘汰进行,bucket的大小会逐渐向那个block size大小bucket转移,最终稳定 



6.7 BucketAllocator中allocate block的流程? 



 





 



6.8 BucketAllocator中free block的流程? 



 


6.9 第一种使用的测试结果 



 


6.10 第二种使用的测试结果 




 


6.11 更多细节,尽在代码中 

https://issues.apache.org/jira/browse/HBASE-7404 

 

这篇关于Base上关于CMS、GC碎片、大缓存的一种解决方案:Bucket Cache----没看懂的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/998041

相关文章

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

Java 缓存框架 Caffeine 应用场景解析

《Java缓存框架Caffeine应用场景解析》文章介绍Caffeine作为高性能Java本地缓存框架,基于W-TinyLFU算法,支持异步加载、灵活过期策略、内存安全机制及统计监控,重点解析其... 目录一、Caffeine 简介1. 框架概述1.1 Caffeine的核心优势二、Caffeine 基础2

Redis高性能Key-Value存储与缓存利器常见解决方案

《Redis高性能Key-Value存储与缓存利器常见解决方案》Redis是高性能内存Key-Value存储系统,支持丰富数据类型与持久化方案(RDB/AOF),本文给大家介绍Redis高性能Key-... 目录Redis:高性能Key-Value存储与缓存利器什么是Redis?为什么选择Redis?Red

React 记忆缓存的三种方法实现

《React记忆缓存的三种方法实现》本文主要介绍了React记忆缓存的三种方法实现,包含React.memo、useMemo、useCallback,用于避免不必要的组件重渲染和计算,感兴趣的可以... 目录1. React.memo2. useMemo3. useCallback使用场景与注意事项在 Re

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保