Android从源码分析一:Looper,Handler消息机制

2024-05-24 07:18

本文主要是介绍Android从源码分析一:Looper,Handler消息机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先,大家都知道Android中只能在主线程中做UI处理,当涉及到子线程中更新UI的处理时,就需要一个消息机制把子线程的消息发送到UI线程,这个时候Handler就腾空出世、闪亮登场,来做这个消息的搬运工!
我们来看Handler一般的用法:

Handler myHandler = new Handler() {  // 子类必须重写此方法,接受数据 public void handleMessage(Message msg) {   switch (msg.what) {   //做接受到消息后处理(比如说UI更新)。}   super.handleMessage(msg);   }   };  //子线程里使用Handler发送消息class MyThread implements Runnable { public void run() { try { Thread。sleep(10000); } catch (InterruptedException e) { // TODO Auto-generated catch block e。printStackTrace(); }            Message msg = new Message(); Bundle b = new Bundle();// 存放数据 b.putString("color""我的"); msg.setData(b); myHandler.sendMessage(msg); //向Handler发送消息,更新UI } } 
当然发送消息的方式有send系列(sendEmptyMessage(int), sendMessage(Message),sendMessageAtTime(Message,long),sendMessageDelayed(Message, long)>和post( post(Runnable), postAtTime(Runnable, long), postDelayed(Runnable, long))系列。

下面我们来一步一步的通过源码来解读整个消息的发送和接受的过程。
1、Looper
首先我们还要提一个东西:消息怎么产生的?这里我们要谈一下Looper.有人形象的把它称之为消息泵,不断地从MessageQueue中抽取Message执行。一个MessageQueue需要一个Looper。

对于Looper主要是prepare()和loop()两个方法。
首先看prepare()方法

 private static void prepare(boolean quitAllowed) {if (sThreadLocal.get() != null) {throw new RuntimeException("Only one Looper may be created per thread");}sThreadLocal.set(new Looper(quitAllowed));}

sThreadLocal是一个ThreadLocal对象,可以在一个线程中存储变量。可以看出Looper.prepare()方法不能被调用两次,同时也保证了一个线程中只有一个Looper实例~否则会抛出异常.

下面是Looper的构造方法:

 private Looper(boolean quitAllowed) {mQueue = new MessageQueue(quitAllowed);mThread = Thread.currentThread();}

在构造方法中,创建了一个MessageQueue(消息队列)。
然后我们看loop()方法:

 /*** Run the message queue in this thread. Be sure to call* {@link #quit()} to end the loop.*/public static void loop() {//方法直接返回了sThreadLocal存储的Looper实例,如果me为null则抛出异常,也就是说looper方法必须在prepare方法之后运行。final Looper me = myLooper();if (me == null) {throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");}//拿到Looper里面的mQueue。final MessageQueue queue = me.mQueue;// Make sure the identity of this thread is that of the local process,// and keep track of what that identity token actually is.Binder.clearCallingIdentity();final long ident = Binder.clearCallingIdentity();
//重头戏来了!进入死循环。for (;;) {Message msg = queue.next(); // might blockif (msg == null) {// 取出一条消息,如果没有消息则阻塞。return;}// This must be in a local variable, in case a UI event sets the loggerPrinter logging = me.mLogging;if (logging != null) {logging.println(">>>>> Dispatching to " + msg.target + " " +msg.callback + ": " + msg.what);}//把消息交给msg的target的dispatchMessage方法去处理,据说target就是Handler。msg.target.dispatchMessage(msg);if (logging != null) {logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);}// Make sure that during the course of dispatching the// identity of the thread wasn't corrupted.final long newIdent = Binder.clearCallingIdentity();if (ident != newIdent) {Log.wtf(TAG, "Thread identity changed from 0x"+ Long.toHexString(ident) + " to 0x"+ Long.toHexString(newIdent) + " while dispatching to "+ msg.target.getClass().getName() + " "+ msg.callback + " what=" + msg.what);}//释放资源。msg.recycleUnchecked();}}

总而言之:Looper类用来为一个线程开启一个消息循环:
先调用prepare(),与当前线程绑定,保证一个线程只会有一个Looper实例,同时一个Looper实例也只有一个MessageQueue。
然后调用loop(),不断从MessageQueue中去取消息,交给消息的target属性的dispatchMessage去处理。
好了,现在消息有了,队列也排好了。就缺一个发送消息的对象了。Handler来也!
2、Handler
我们先来看一下它的构造方法:

public Handler(Callback callback, boolean async) {if (FIND_POTENTIAL_LEAKS) {final Class<? extends Handler> klass = getClass();if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&(klass.getModifiers() & Modifier.STATIC) == 0) {Log.w(TAG, "The following Handler class should be static or leaks might occur: " +klass.getCanonicalName());}}
//获得mLooper对象,通过它获取保存了的MessageQueue(消息队列)。mLooper = Looper.myLooper();if (mLooper == null) {throw new RuntimeException("Can't create handler inside thread that has not called Looper.prepare()");}mQueue = mLooper.mQueue;mCallback = callback;mAsynchronous = async;}

通过 Looper.myLooper();获得mLooper对象,然后又通过mLooper.mQueue获得了mLooper保存的消息队列,这样就保证了Handler与Looper实例中的MessageQueue关联上了。
然后看我们的sendMessage()是怎样发送消息的?
我们从源码中看到,

        sendMessage-->sendEmptyMessageDelayed-->sendMessageDelayed-->sendMessageAtTime:public boolean sendMessageAtTime(Message msg, long uptimeMillis) {MessageQueue queue = mQueue;if (queue == null) {RuntimeException e = new RuntimeException(this + " sendMessageAtTime() called with no mQueue");Log.w("Looper", e.getMessage(), e);return false;}return enqueueMessage(queue, msg, uptimeMillis);}

几次调用之后,最终通过sendMessageAtTime()方法内部构建了一个新的MessageQueue ,并且将其与传过来的Message一起调用了enqueueMessage()方法,我们再来看:

 private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {//把Handler对象作为Looper里面的msg.target;并将msg通过MessageQueue类放到消息队列里面。最终把这个消息发送出去。msg.target = this;if (mAsynchronous) {msg.setAsynchronous(true);}return queue.enqueueMessage(msg, uptimeMillis);}

如果大家有心,应该会记得Looper里面的loop()方法中的无限循环里面的

 msg.target.dispatchMessage(msg);//最终Looper交给msg.target去处理,

而今,handler里面将msg.targer赋值为this;也就是把当前的handler作为msg的target属性。最终会调用MessageQueue 的enqueueMessage的方法,也就是说handler发出的消息,最终会保存到消息队列中去!
现在已经很清楚了,就是Looper会调用perpare和loop方法,在当前执行的线程中保存一个Looper实例,并且这个实例会保存一个MessageQueue对象,然后当前线程进入无限循环当中,不断从MessageQueue中读取msg.target也就是Handler发送过来的消息。接下来我们就看Handler是如何接收的:刚刚说到了

      msg.target.dispatchMessage(msg);//处理/**接下来我们看这个函数是如何处理的:* Handle system messages here.*/public void dispatchMessage(Message msg) {if (msg.callback != null) {handleCallback(msg);} else {if (mCallback != null) {if (mCallback.handleMessage(msg)) {return;}}handleMessage(msg);}}

无论如何最终都调用了handleMessage();
下面我们来看一下handleMesssage()这个方法:

/*** Subclasses must implement this to receive messages.*/public void handleMessage(Message msg) {}

空的,上面的注释是说,子类必须重写这个方法来接收消息。所以知道我们为啥写Handler的时候都要重写handleMessage()方法了吧!

这篇关于Android从源码分析一:Looper,Handler消息机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/997737

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

详解Spring中REQUIRED事务的回滚机制详解

《详解Spring中REQUIRED事务的回滚机制详解》在Spring的事务管理中,REQUIRED是最常用也是默认的事务传播属性,本文就来详细的介绍一下Spring中REQUIRED事务的回滚机制,... 目录1. REQUIRED 的定义2. REQUIRED 下的回滚机制2.1 异常触发回滚2.2 回

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

java 恺撒加密/解密实现原理(附带源码)

《java恺撒加密/解密实现原理(附带源码)》本文介绍Java实现恺撒加密与解密,通过固定位移量对字母进行循环替换,保留大小写及非字母字符,由于其实现简单、易于理解,恺撒加密常被用作学习加密算法的入... 目录Java 恺撒加密/解密实现1. 项目背景与介绍2. 相关知识2.1 恺撒加密算法原理2.2 Ja