基于粒子群算法优化的长短期记忆神经网络(PSO-LSTM)回归预测

本文主要是介绍基于粒子群算法优化的长短期记忆神经网络(PSO-LSTM)回归预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

粒子群算法优化的长短期记忆(LSTM)神经网络用于回归预测是一种结合了进化计算和深度学习的强大方法。

1. 背景介绍

LSTM神经网络
LSTM(Long Short-Term Memory)是一种特殊的递归神经网络(RNN),特别适用于处理和预测基于时间序列的数据。与传统的RNN不同,LSTM通过引入“记忆单元”和“门控机制”(输入门、遗忘门、输出门)来解决长时间依赖问题,使其能够记住长时间步长内的信息。
粒子群优化(PSO)
粒子群优化(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,由Kennedy和Eberhart在1995年提出。PSO模拟鸟群捕食的行为,每个解被看作是一个粒子,通过更新速度和位置来搜索最优解。PSO通过个体极值(pBest)和全局极值(gBest)引导粒子移动,从而在搜索空间中寻找最优解。

2. 方法概述

结合PSO和LSTM的回归预测模型主要步骤包括:
LSTM网络构建:
构建一个基本的LSTM网络结构,通常包括输入层、若干LSTM层、全连接层和输出层。
定义损失函数(如均方误差MSE)和优化器(如Adam)。
PSO算法初始化:
初始化粒子群,每个粒子代表LSTM网络的一组超参数(如学习率、隐藏层单元数、训练轮数等)。
为每个粒子随机初始化位置和速度。
粒子评估:
将每个粒子对应的超参数应用到LSTM网络中,训练网络并计算损失值(例如在验证集上的MSE)。
更新每个粒子的个体极值(pBest)和全局极值(gBest)。
粒子更新:
根据PSO的速度和位置更新公式,更新每个粒子的速度和位置
迭代优化:
重复粒子评估和更新步骤,直到满足停止条件(如达到最大迭代次数或损失函数收敛)。
最终模型训练:
使用最佳粒子(即全局最优解gBest)对应的超参数重新训练LSTM网络,并在测试集上评估性能。

3. 优点

鲁棒性:PSO可以全局搜索最优超参数,避免了传统梯度下降方法可能陷入局部最优的问题。
适应性强:PSO优化可以适应不同的数据集和模型需求,灵活性高。
精度高:通过优化超参数,可以显著提高LSTM模型的预测精度。

4. 应用场景

时间序列预测:如股票价格预测、气象数据预测、销售量预测等。
工程应用:如流量预测、设备寿命预测等。
经济金融:如市场需求预测、经济指标预测等

MATLAB实现部分源代码:

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');
%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
%res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = ceil(num_size * num_samples)+1; % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);indim=size(P_train, 1);                  % 输入特征维度
outdim = 1;                                  % 最后一列为输出%%  优化算法参数设置
SearchAgents_no = 5;                   % 数量
Max_iteration = 3;                     % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3, 10, 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30, 1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)fitness = @(x)funLSTM(x,p_train,t_train,indim);%构建优化函数
[Best_score,Best_pos,Convergence_curve] = PSO(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness);%%  记录最佳参数
Best_pos(2)=round(Best_pos(2));
best_lr = Best_pos(1, 1);
best_hd = Best_pos(1, 2);
best_l2 = Best_pos(1, 3);

训练进度:
在这里插入图片描述
预测结果:
在这里插入图片描述
模型评价指标:
在这里插入图片描述

完整代码下载:PSO-LSTM
https://mbd.pub/o/bread/ZpaVk5ls

这篇关于基于粒子群算法优化的长短期记忆神经网络(PSO-LSTM)回归预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/997383

相关文章

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

React 记忆缓存的三种方法实现

《React记忆缓存的三种方法实现》本文主要介绍了React记忆缓存的三种方法实现,包含React.memo、useMemo、useCallback,用于避免不必要的组件重渲染和计算,感兴趣的可以... 目录1. React.memo2. useMemo3. useCallback使用场景与注意事项在 Re

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.