C语言还可以这么玩,你绝对想不到!

2024-05-18 17:48
文章标签 语言 绝对 想不到

本文主要是介绍C语言还可以这么玩,你绝对想不到!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“小麦大叔”,选择“置顶/星标公众号”

福利干货,第一时间送达

大家好,我是小麦,又到了愉快的周五,有人说程序员就是艺术家,那下面我们看看用c语言能画出什么作品吧。

6421b43e791c40efec89d1c570e03d08.png

我们知道,在计算机中要显示颜色,一般都是用R、G、B三个0-255范围内的整数来描述。

5d9dfac927d11480e8eb0e6accf52978.png

这一点,即便你不是从事前端、客户端这些与界面交互相关的开发工作,也应该知道。

也就是说,你现在在屏幕上看到的任何一个像素点的颜色,都可以用RGB三个整数值来表示。

那就有一个有趣的问题:如果让程序自动来填写每一个像素点,最后会是一副什么画呢?

最近,我在知乎就看到了这么一个有趣的话题,看完真的让人称奇,独乐乐不如众乐乐,分享给大家。

事情是这样的:

国外有个大佬在StackExchange上发起了一个叫做 Tweetable Mathematical Art 的比赛。

参赛者需要用C/C++编写代表三原色的RD、GR、BL三个函数,每个函数都不能超过 140 个字符。每个函数都会接到 i 和 j 两个整型参数(0 ≤ i, j ≤ 1023),然后需要返回一个 0 到 255 之间的整数,表示位于 (i, j) 的像素点的颜色值。

举个例子,如果 RD(0, 0) 和 GR(0, 0) 返回的都是 0 ,但 BL(0, 0) 返回的是 255 ,那么图像的最左上角那个像素就是蓝色。

参赛者编写的代码会被插进下面这段程序当中(我做了一些细微的改动),最终会生成一个大小为 1024×1024 的图片。

// NOTE: compile with g++ filename.cpp -std=c++11
#include <iostream>
#include <cmath>
#include <cstdlib>
#define DIM 1024
#define DM1 (DIM-1)
#define _sq(x) ((x)*(x)) // square
#define _cb(x) abs((x)*(x)*(x)) // absolute value of cube
#define _cr(x) (unsigned char)(pow((x),1.0/3.0)) // cube rootunsigned char GR(int,int);
unsigned char BL(int,int);unsigned char RD(int i,int j){// YOUR CODE HERE
}
unsigned char GR(int i,int j){// YOUR CODE HERE
}
unsigned char BL(int i,int j){// YOUR CODE HERE
}void pixel_write(int,int);
FILE *fp;
int main(){fp = fopen("MathPic.ppm","wb");fprintf(fp, "P6\n%d %d\n255\n", DIM, DIM);for(int j=0;j<DIM;j++)for(int i=0;i<DIM;i++)pixel_write(i,j);fclose(fp);return 0;
}
void pixel_write(int i, int j){static unsigned char color[3];color[0] = RD(i,j)&255;color[1] = GR(i,j)&255;color[2] = BL(i,j)&255;fwrite(color, 1, 3, fp);
}

我选了一些自己比较喜欢的作品,放在下面和大家分享。首先,是一个来自 Martin Büttner 的作品:

336d3629cf3fbc555b24623ec8cbf538.png

它的代码如下:

unsigned char RD(int i,int j){return (char)(_sq(cos(atan2(j-512,i-512)/2))*255);
}unsigned char GR(int i,int j){return (char)(_sq(cos(atan2(j-512,i-512)/2-2*acos(-1)/3))*255);
}unsigned char BL(int i,int j){return (char)(_sq(cos(atan2(j-512,i-512)/2+2*acos(-1)/3))*255);
}

这同样是来自 Martin Büttner 的作品:

fdf6f3ea81680fd4bc5e25a73ba710d8.png

这是目前暂时排名第一的作品,它的代码如下:

unsigned char RD(int i,int j){#define r(n)(rand()%n)static char c[1024][1024];return!c[i][j]?c[i][j]=!r(999)?r(256):RD((i+r(2))%1024,(j+r(2))%1024):c[i][j];
}unsigned char GR(int i,int j){static char c[1024][1024];return!c[i][j]?c[i][j]=!r(999)?r(256):GR((i+r(2))%1024,(j+r(2))%1024):c[i][j];
}unsigned char BL(int i,int j){static char c[1024][1024];return!c[i][j]?c[i][j]=!r(999)?r(256):BL((i+r(2))%1024,(j+r(2))%1024):c[i][j];
}

下面这张图仍然出自 Martin Büttner 之手:

f0f57c951bffc8c4685348462ca57cb6.png

难以想象, Mandelbrot 分形图形居然可以只用这么一点代码画出:

unsigned char RD(int i,int j){float x=0,y=0;int k;for(k=0;k++<256;){float a=x*x-y*y+(i-768.0)/512;y=2*x*y+(j-512.0)/512;x=a;if(x*x+y*y>4)break;}return log(k)*47;
}unsigned char GR(int i,int j){float x=0,y=0;int k;for(k=0;k++<256;){float a=x*x-y*y+(i-768.0)/512;y=2*x*y+(j-512.0)/512;x=a;if(x*x+y*y>4)break;}return log(k)*47;
}unsigned char BL(int i,int j){float x=0,y=0;int k;for(k=0;k++<256;){float a=x*x-y*y+(i-768.0)/512;y=2*x*y+(j-512.0)/512;x=a;if(x*x+y*y>4)break;}return 128-log(k)*23;
}

Manuel Kasten 也制作了一个 Mandelbrot 集的图片,与刚才不同的是,该图描绘的是 Mandelbrot 集在某处局部放大后的结果:

2c10895da0d16d6b839ff1c2b3235d7e.png

它的代码如下:

unsigned char RD(int i,int j){double a=0,b=0,c,d,n=0;while((c=a*a)+(d=b*b)<4&&n++<880){b=2*a*b+j*8e-9-.645411;a=c-d+i*8e-9+.356888;}return 255*pow((n-80)/800,3.);
}unsigned char GR(int i,int j){double a=0,b=0,c,d,n=0;while((c=a*a)+(d=b*b)<4&&n++<880){b=2*a*b+j*8e-9-.645411;a=c-d+i*8e-9+.356888;}return 255*pow((n-80)/800,.7);
}unsigned char BL(int i,int j){double a=0,b=0,c,d,n=0;while((c=a*a)+(d=b*b)<4&&n++<880){b=2*a*b+j*8e-9-.645411;a=c-d+i*8e-9+.356888;}return 255*pow((n-80)/800,.5);
}

这是 Manuel Kasten 的另一作品:

bf4bf24eec752a43935da0b65a2603fa.png

生成这张图片的代码很有意思:函数依靠 static 变量来控制绘画的进程,完全没有用到 i 和 j 这两个参数!

unsigned char RD(int i,int j){static double k;k+=rand()/1./RAND_MAX;int l=k;l%=512;return l>255?511-l:l;
}unsigned char GR(int i,int j){static double k;k+=rand()/1./RAND_MAX;int l=k;l%=512;return l>255?511-l:l;
}unsigned char BL(int i,int j){static double k;k+=rand()/1./RAND_MAX;int l=k;l%=512;return l>255?511-l:l;
}

这是来自 githubphagocyte 的作品:

7b103096a693725f5ea10964e5129286.png

它的代码如下:

unsigned char RD(int i,int j){float s=3./(j+99);float y=(j+sin((i*i+_sq(j-700)*5)/100./DIM)*35)*s;return (int((i+DIM)*s+y)%2+int((DIM*2-i)*s+y)%2)*127;
}unsigned char GR(int i,int j){float s=3./(j+99);float y=(j+sin((i*i+_sq(j-700)*5)/100./DIM)*35)*s;return (int(5*((i+DIM)*s+y))%2+int(5*((DIM*2-i)*s+y))%2)*127;
}unsigned char BL(int i,int j){float s=3./(j+99);float y=(j+sin((i*i+_sq(j-700)*5)/100./DIM)*35)*s;return (int(29*((i+DIM)*s+y))%2+int(29*((DIM*2-i)*s+y))%2)*127;
}

这是来自 githubphagocyte 的另一个作品:

9d079bd56c570c186090cd5a838383e5.png

这是一张使用 diffusion-limited aggregation 模型得到的图片,程序运行起来要耗费不少时间。

代码很有意思:巧妙地利用宏定义,打破了函数与函数之间的界限,三段代码的字数限制便能合在一起使用了。

unsigned char RD(int i,int j){
#define D DIM
#define M m[(x+D+(d==0)-(d==2))%D][(y+D+(d==1)-(d==3))%D]
#define R rand()%D
#define B m[x][y]
return(i+j)?256-(BL(i,j))/2:0;
}unsigned char GR(int i,int j){
#define A static int m[D][D],e,x,y,d,c[4],f,n;if(i+j<1){for(d=D*D;d;d--){m[d%D][d/D]=d%6?0:rand()%2000?1:255;}for(n=1
return RD(i,j);
}unsigned char BL(int i,int j){
A;n;n++){x=R;y=R;if(B==1){f=1;for(d=0;d<4;d++){c[d]=M;f=f<c[d]?c[d]:f;}if(f>2){B=f-1;}else{++e%=4;d=e;if(!c[e]){B=0;M=1;}}}}}return m[i][j];
}

最后这张图来自 Eric Tressler:

72d0bfbcf7fa299b2c9f01bdcfcbe529.png

这是由 logistic 映射得到的 Feigenbaum 分岔图。和刚才一样,对应的代码也巧妙地利用了宏定义来节省字符:

unsigned char RD(int i,int j){
#define A float a=0,b,k,r,x
#define B int e,o
#define C(x) x>255?255:x
#define R return
#define D DIM
R BL(i,j)*(D-i)/D;
}unsigned char GR(int i,int j){
#define E DM1
#define F static float
#define G for(
#define H r=a*1.6/D+2.4;x=1.0001*b/D
R BL(i,j)*(D-j/2)/D;
}unsigned char BL(int i,int j){
F c[D][D];if(i+j<1){A;B;G;a<D;a+=0.1){G b=0;b<D;b++){H;G k=0;k<D;k++){x=r*x*(1-x);if(k>D/2){e=a;o=(E*x);c[e][o]+=0.01;}}}}}R C(c[j][i])*i/D;
}

怎么样,短短几行代码,就能画出如此绚烂的图像,你有没有什么脑洞大开的想法,可以复制上面的代码来试一试啊!

作者:烧茄子

原文地址:www.zhihu.com/question/30262900/answer/48741026


版权归原作者所有,如有侵权,请联系删除。

—— The End ——

往期推荐

好项目,不私藏!适用于单片机开发的开源轮子

单片机开发从来不用数据结构?

写烂代码的人离职之后...

难倒高手了,c语言枚举end的作用是什么?

加入嵌入式技术交流群一起进步

点击上方名片关注我

f8597695d1d375ec8216e9b8d0785921.png

你点的每个好看,我都认真当成了喜欢

这篇关于C语言还可以这么玩,你绝对想不到!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/995613

相关文章

GO语言短变量声明的实现示例

《GO语言短变量声明的实现示例》在Go语言中,短变量声明是一种简洁的变量声明方式,使用:=运算符,可以自动推断变量类型,下面就来具体介绍一下如何使用,感兴趣的可以了解一下... 目录基本语法功能特点与var的区别适用场景注意事项基本语法variableName := value功能特点1、自动类型推

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Go语言连接MySQL数据库执行基本的增删改查

《Go语言连接MySQL数据库执行基本的增删改查》在后端开发中,MySQL是最常用的关系型数据库之一,本文主要为大家详细介绍了如何使用Go连接MySQL数据库并执行基本的增删改查吧... 目录Go语言连接mysql数据库准备工作安装 MySQL 驱动代码实现运行结果注意事项Go语言执行基本的增删改查准备工作

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据

Go语言网络故障诊断与调试技巧

《Go语言网络故障诊断与调试技巧》在分布式系统和微服务架构的浪潮中,网络编程成为系统性能和可靠性的核心支柱,从高并发的API服务到实时通信应用,网络的稳定性直接影响用户体验,本文面向熟悉Go基本语法和... 目录1. 引言2. Go 语言网络编程的优势与特色2.1 简洁高效的标准库2.2 强大的并发模型2.

Go语言使用sync.Mutex实现资源加锁

《Go语言使用sync.Mutex实现资源加锁》数据共享是一把双刃剑,Go语言为我们提供了sync.Mutex,一种最基础也是最常用的加锁方式,用于保证在任意时刻只有一个goroutine能访问共享... 目录一、什么是 Mutex二、为什么需要加锁三、实战案例:并发安全的计数器1. 未加锁示例(存在竞态)

C语言自定义类型之联合和枚举解读

《C语言自定义类型之联合和枚举解读》联合体共享内存,大小由最大成员决定,遵循对齐规则;枚举类型列举可能值,提升可读性和类型安全性,两者在C语言中用于优化内存和程序效率... 目录一、联合体1.1 联合体类型的声明1.2 联合体的特点1.2.1 特点11.2.2 特点21.2.3 特点31.3 联合体的大小1

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示