Flink1.17之前实现JdbcLookup谓词下推

2024-05-16 14:29

本文主要是介绍Flink1.17之前实现JdbcLookup谓词下推,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Flink1.17之前实现JdbcLookup谓词下推

需求背景

Flink在1.17版本之前,flink-connector-jdbc的LookupJoin是不支持on条件下推的,例如on device_id=‘1’,查询SQL中是不会包含device_id='1’的条件,相关issue:https://issues.apache.org/jira/browse/FLINK-32321,在1.19版本该问题已经解决。谓词不下推会导致每次查询的数据量变多,本篇文章主要介绍如何在1.17支持谓词下推

技术实现

在JdbcDynamicTableSource中是已经支持谓词下推到连接器端的,支持连接器的Lookup查询没有将谓词下推应用到SQL语句上,所以我们主要变动如下两个类:

  1. JdbcDynamicTableSource
  2. JdbcRowDataLookupFunction

修改JdbcDynamicTableSource

位置:org.apache.flink.connector.jdbc.table.JdbcDynamicTableSource

目的:在getLookupRuntimeProvider方法中将将谓词下推的查询条件以及参数传入到LookupFunction中。

修改内容:如下代码

    @Overridepublic LookupRuntimeProvider getLookupRuntimeProvider(LookupContext context) {// JDBC only support non-nested look up keysString[] keyNames = new String[context.getKeys().length];for (int i = 0; i < keyNames.length; i++) {int[] innerKeyArr = context.getKeys()[i];Preconditions.checkArgument(innerKeyArr.length == 1, "JDBC only support non-nested look up keys");keyNames[i] = DataType.getFieldNames(physicalRowDataType).get(innerKeyArr[0]);}final RowType rowType = (RowType) physicalRowDataType.getLogicalType();JdbcRowDataLookupFunction lookupFunction =new JdbcRowDataLookupFunction(options,lookupMaxRetryTimes,DataType.getFieldNames(physicalRowDataType).toArray(new String[0]),DataType.getFieldDataTypes(physicalRowDataType).toArray(new DataType[0]),keyNames,rowType,// 将谓词下推的查询条件以及参数传入到LookupFunction中resolvedPredicates,pushdownParams);if (cache != null) {return PartialCachingLookupProvider.of(lookupFunction, cache);} else {return LookupFunctionProvider.of(lookupFunction);}}

修改JdbcRowDataLookupFunction

位置:org.apache.flink.connector.jdbc.table.JdbcRowDataLookupFunction

目的:接受下推的条件及参数,重新拼装SQL,并在执行的时候将参数传入

修改内容:

  1. 构造方法支持接受下推的条件及参数两个变量,拼接条件语句,并将条件中的’?‘参数占位符替换为’:predicate_1’以支持FieldNamedPreparedStatement
 public JdbcRowDataLookupFunction(JdbcConnectorOptions options,int maxRetryTimes,String[] fieldNames,DataType[] fieldTypes,String[] keyNames,RowType rowType,List<String> resolvedPredicates,Object[] pushdownParams) {checkNotNull(options, "No JdbcOptions supplied.");checkNotNull(fieldNames, "No fieldNames supplied.");checkNotNull(fieldTypes, "No fieldTypes supplied.");checkNotNull(keyNames, "No keyNames supplied.");this.connectionProvider = new SimpleJdbcConnectionProvider(options);List<String> nameList = Arrays.asList(fieldNames);DataType[] keyTypes =Arrays.stream(keyNames).map(s -> {checkArgument(nameList.contains(s),"keyName %s can't find in fieldNames %s.",s,nameList);return fieldTypes[nameList.indexOf(s)];}).toArray(DataType[]::new);this.maxRetryTimes = maxRetryTimes;// 添加谓词条件查询的逻辑List<String> predicateNames = new ArrayList<>(resolvedPredicates.size());List<String> fieldNamedPredicates = new ArrayList<>(resolvedPredicates.size());for (String pred : resolvedPredicates) {while (pred.contains("?")){String predicateName = "predicate_"+predicateNames.size();pred = pred.replaceFirst("\\?", ":" + predicateName);predicateNames.add(predicateName);}fieldNamedPredicates.add(String.format("(%s)", pred));}String joinedConditions = fieldNamedPredicates.isEmpty() ? "" : " AND " + String.join(" AND ", fieldNamedPredicates);this.pushdownParams = pushdownParams;this.conditionNames = ArrayUtils.concat(keyNames, predicateNames.toArray(new String[0]));this.query =options.getDialect().getSelectFromStatement(options.getTableName(), fieldNames, keyNames) + joinedConditions;LOG.debug("Query generated for JDBC lookup: " + query);JdbcDialect jdbcDialect = options.getDialect();this.jdbcRowConverter = jdbcDialect.getRowConverter(rowType);this.lookupKeyRowConverter =jdbcDialect.getRowConverter(RowType.of(Arrays.stream(keyTypes).map(DataType::getLogicalType).toArray(LogicalType[]::new)));}
  1. 修改establishConnectionAndStatement方法,在创建Statement是将新生成的conditionNames作为fieldNames传入
    private void establishConnectionAndStatement() throws SQLException, ClassNotFoundException {Connection dbConn = connectionProvider.getOrEstablishConnection();statement = FieldNamedPreparedStatement.prepareStatement(dbConn, query, conditionNames);}
  1. 新增paddingPredicates方法用来想Statement中填充参数
    private FieldNamedPreparedStatement paddingPredicates() throws SQLException {// 进行谓词填充int pushdowParamStartIndex = conditionNames.length - pushdownParams.length;for (int i = pushdowParamStartIndex; i < conditionNames.length; i++) {Object param = pushdownParams[i - pushdowParamStartIndex];if (param instanceof String) {statement.setString(i, (String) param);} else if (param instanceof Long) {statement.setLong(i, (Long) param);} else if (param instanceof Integer) {statement.setInt(i, (Integer) param);} else if (param instanceof Double) {statement.setDouble(i, (Double) param);} else if (param instanceof Boolean) {statement.setBoolean(i, (Boolean) param);} else if (param instanceof Float) {statement.setFloat(i, (Float) param);} else if (param instanceof BigDecimal) {statement.setBigDecimal(i, (BigDecimal) param);} else if (param instanceof Byte) {statement.setByte(i, (Byte) param);} else if (param instanceof Short) {statement.setShort(i, (Short) param);} else if (param instanceof Date) {statement.setDate(i, (Date) param);} else if (param instanceof Time) {statement.setTime(i, (Time) param);} else if (param instanceof Timestamp) {statement.setTimestamp(i, (Timestamp) param);} else {// extends with other types if neededthrow new IllegalArgumentException("Padding predicate failed. Parameter "+ i+ " of type "+ param.getClass()+ " is not handled (yet).");}}return statement;}
  1. 修改lookup方法,在执行查询之前,进行参数填充
    /*** This is a lookup method which is called by Flink framework in runtime.** @param keyRow lookup keys*/@Overridepublic Collection<RowData> lookup(RowData keyRow) {for (int retry = 0; retry <= maxRetryTimes; retry++) {try {statement.clearParameters();// 谓词填充statement = paddingPredicates();statement = lookupKeyRowConverter.toExternal(keyRow, statement);try (ResultSet resultSet = statement.executeQuery()) {ArrayList<RowData> rows = new ArrayList<>();while (resultSet.next()) {RowData row = jdbcRowConverter.toInternal(resultSet);rows.add(row);}rows.trimToSize();return rows;}} catch (SQLException e) {LOG.error(String.format("JDBC executeBatch error, retry times = %d", retry), e);if (retry >= maxRetryTimes) {throw new RuntimeException("Execution of JDBC statement failed.", e);}try {if (!connectionProvider.isConnectionValid()) {statement.close();connectionProvider.closeConnection();establishConnectionAndStatement();}} catch (SQLException | ClassNotFoundException exception) {LOG.error("JDBC connection is not valid, and reestablish connection failed",exception);throw new RuntimeException("Reestablish JDBC connection failed", exception);}try {Thread.sleep(1000L * retry);} catch (InterruptedException e1) {throw new RuntimeException(e1);}}}return Collections.emptyList();}

这篇关于Flink1.17之前实现JdbcLookup谓词下推的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/995168

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库