制作coco类型数据集

2024-05-16 10:36
文章标签 类型 数据 制作 coco

本文主要是介绍制作coco类型数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

COCO格式数据集简介

COCO数据集是一个大型的、丰富的物体检测,分割和字幕数据集。这个数据集以scene understanding(场景理解)为目标,主要从复杂的日常场景中截取,图像中的目标通过精确的segmentation(分割)进行位置的标定。图像包括91类目标,328,000影像和2,500,000个label。是目前为止有语义分割的最大数据集,提供的类别有80类,有超过33万张图片,其中20万张有标注,整个数据集中个体的数目超过150万个。

LabelMe版(本地标注)

第一步:整理图片

根据需求按照自己喜欢的方式收集图片,图片中包含需要检测的信息即可,可以使用ImageNet格式数据集整理图片的方式对收集的图片进行预处理。

整理图片(目标检测)
|---images|----test|----xxx.jpg/png/....|----train|----xxx.jpg/png/....|----valid|----xxx.jpg/png/....

数据划分的方法并没有明确的规定,不过可以参考两个原则:

  1. 对于小规模样本集(几万量级),常用的分配比例是 60% 训练集、20% 验证集、20% 测试集。

  2. 对于大规模样本集(百万级以上),只要验证集和测试集的数量足够即可,例如有 100w 条数据,那么留 1w 验证集,1w 测试集即可。1000w 的数据,同样留 1w 验证集和 1w 测试集。

第二步:标注图片

使用熟悉的标注方式标注图片,如可使用LabelMe批量打开图片文件夹的图片,进行标注并保存为json文件。

  • LabelMe:麻省理工(MIT)的计算机科学和人工智能实验室(CSAIL)研发的图像标注工具,标注格式为LabelMe,网上较多LabelMe转VOC、COCO格式的脚本,可以标注矩形、圆形、线段、点。标注语义分割、实例分割数据集尤其推荐。

  • 安装与打开方式:pip install labelme安装完成后输入labelme即可打开。

 

第三步:转换成COCO标注格式

将LabelMe格式的标注文件转换成COCO标注格式,可以使用如下代码:

import json
import numpy as np
import glob
import PIL.Image
from PIL import ImageDraw
from shapely.geometry import Polygonclass labelme2coco(object):def __init__(self, labelme_json=[], save_json_path='./new.json'):''':param labelme_json: 所有labelme的json文件路径组成的列表:param save_json_path: json保存位置'''self.labelme_json = labelme_jsonself.save_json_path = save_json_pathself.annotations = []self.images = []self.categories = [{'supercategory': None, 'id': 1, 'name': 'cat'},{'supercategory': None, 'id': 2, 'name': 'dog'}] # 指定标注的类别self.label = []self.annID = 1self.height = 0self.width = 0self.save_json()# 定义读取图像标注信息的方法def image(self, data, num):image = {}height = data['imageHeight']width = data['imageWidth']image['height'] = heightimage['width'] = widthimage['id'] = num + 1image['file_name'] = data['imagePath'].split('/')[-1]self.height = heightself.width = widthreturn image# 定义数据转换方法def data_transfer(self):for num, json_file in enumerate(self.labelme_json):with open(json_file, 'r') as fp:data = json.load(fp)  # 加载json文件self.images.append(self.image(data, num)) # 读取所有图像标注信息并加入images数组for shapes in data['shapes']:label = shapes['label']points = shapes['points']shape_type = shapes['shape_type']if shape_type == 'rectangle':points = [points[0],[points[0][0],points[1][1]],points[1],[points[1][0],points[0][1]]]     self.annotations.append(self.annotation(points, label, num)) # 读取所有检测框标注信息并加入annotations数组self.annID += 1print(self.annotations)# 定义读取检测框标注信息的方法def annotation(self, points, label, num):annotation = {}annotation['segmentation'] = [list(np.asarray(points).flatten())]poly = Polygon(points)area_ = round(poly.area, 6)annotation['area'] = area_annotation['iscrowd'] = 0annotation['image_id'] = num + 1annotation['bbox'] = list(map(float, self.getbbox(points)))annotation['category_id'] = self.getcatid(label)annotation['id'] = self.annIDreturn annotation# 定义读取检测框的类别信息的方法def getcatid(self, label):for categorie in self.categories:if label == categorie['name']:return categorie['id']return -1def getbbox(self, points):polygons = pointsmask = self.polygons_to_mask([self.height, self.width], polygons)return self.mask2box(mask)def mask2box(self, mask):'''从mask反算出其边框mask:[h,w]  0、1组成的图片1对应对象,只需计算1对应的行列号(左上角行列号,右下角行列号,就可以算出其边框)'''# np.where(mask==1)index = np.argwhere(mask == 1)rows = index[:, 0]clos = index[:, 1]# 解析左上角行列号left_top_r = np.min(rows)  # yleft_top_c = np.min(clos)  # x# 解析右下角行列号right_bottom_r = np.max(rows)right_bottom_c = np.max(clos)return [left_top_c, left_top_r, right_bottom_c - left_top_c,right_bottom_r - left_top_r]  # [x1,y1,w,h] 对应COCO的bbox格式def polygons_to_mask(self, img_shape, polygons):mask = np.zeros(img_shape, dtype=np.uint8)mask = PIL.Image.fromarray(mask)xy = list(map(tuple, polygons))PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)mask = np.array(mask, dtype=bool)return maskdef data2coco(self):data_coco = {}data_coco['images'] = self.imagesdata_coco['categories'] = self.categoriesdata_coco['annotations'] = self.annotationsreturn data_cocodef save_json(self):self.data_transfer()self.data_coco = self.data2coco()# 保存json文件json.dump(self.data_coco, open(self.save_json_path, 'w'), indent=4)  # 写入指定路径的json文件,indent=4 更加美观显示labelme_json = glob.glob('picture/*.json')  # 获取指定目录下的json格式的文件
labelme2coco(labelme_json, 'picture/new.json') # 指定生成文件路径

第四步:按照目录结构整理文件

创建两个文件夹“images”和“annotations”,分别用于存放图片以及标注信息。按照要求的目录结构,整理好文件夹的文件,最后将文件夹重新命名,制作完成后如想要检查数据集,可使用BaseDT的数据集格式检查功能,结合数据集检查提示对数据集进行调整,最后完成整个数据集制作。在训练的时候,只要通过model.load_dataset指定数据集的路径就可以了。

COCO格式数据集(目标检测)
|---annotations|----test.json|----train.json|----valid.json
|---images|----test|----train|----valid
classes.txt

这篇关于制作coco类型数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/994660

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

springboot项目打jar制作成镜像并指定配置文件位置方式

《springboot项目打jar制作成镜像并指定配置文件位置方式》:本文主要介绍springboot项目打jar制作成镜像并指定配置文件位置方式,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录一、上传jar到服务器二、编写dockerfile三、新建对应配置文件所存放的数据卷目录四、将配置文

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指