旅行商问题(TSP)的启发式求解算法

2024-05-16 07:48

本文主要是介绍旅行商问题(TSP)的启发式求解算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、TSP问题

TSP问题(Travelling Salesman Problem)即旅行商问题,又译为旅行推销员问题、货郎担问题,是数学领域中著名问题之一。假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。

二、求解算法

从图论的角度来看,TSP问题实质是在一个带权完全无向图中,找一个权值最小的Hamilton回路。由于该问题的可行解是所有顶点的全排列,随着顶点数的增加,会产生组合爆炸,它是一个NP完全问题。
早期的研究者使用精确算法求解该问题,常用的方法包括:分枝定界法、线性规划法、动态规划法等。但是,随着问题规模的增大,精确算法将变得无能为力,因此,在后来的研究中,国内外学者重点使用近似算法或启发式算法,主要有遗传算法、模拟退火法、蚁群算法、禁忌搜索算法、贪婪算法和神经网络等。
下面使用遗传算法模拟退火法蚁群算法禁忌搜索算法贪婪算法 对TSP问题求近似解。
我们使用的TSP问题来自于TSPLIB上的att48,这是一个对称TSP问题,城市规模为48,其最优值为10628.其距离计算方法下所示:
这里写图片描述

首先定义几个通用类,类City表示城市,类CityManager表示旅行商需要拜访的所有城市,类Tour表示旅行商的行走路线。

public class City {int x;    //城市坐标xint y;    //城市坐标ypublic City(int x, int y){this.x = x;this.y = y;}public int getX(){return this.x;}public int getY(){return this.y;}/*** 计算两个城市之间的距离,距离计算方法由上图提供* @param city* @return*/public int distanceTo(City city){int xd = Math.abs(getX() - city.getX());int yd = Math.abs(getY() - city.getY());double rij = Math.sqrt( ( xd*xd + yd*yd ) / 10.0 );int tij = (int)Math.round(rij);if (tij < rij)return tij + 1;elsereturn tij;}@Overridepublic String toString(){return "(" + getX()+ "," + getY() + ")";}
}
import java.util.ArrayList;public class CityManager {//保存所有的目的城市private static ArrayList destinationCities = new ArrayList<City>();public static void addCity(City city) {destinationCities.add(city);}public static City getCity(int index){return (City)destinationCities.get(index);}// 获得城市的数量public static int numberOfCities(){return destinationCities.size();}}
import java.util.ArrayList;
import java.util.Collections;public class Tour{// 访问路线,保存需要访问的城市private ArrayList tour = new ArrayList<City>();// 构建一个空的路线public Tour(){for (int i = 0; i < CityManager.numberOfCities(); i++) {tour.add(null);}}// 用路线tour构建当前路线public Tour(ArrayList tour){this.tour = (ArrayList) tour.clone();}// 返回当前路线信息public ArrayList getTour(){return tour;}// 创建一个城市路线public void generateIndividual() {// 将目的城市一个个添加到当前路线中for (int cityIndex = 0; cityIndex < CityManager.numberOfCities(); cityIndex++) {setCity(cityIndex, CityManager.getCity(cityIndex));}// 把路线上城市的顺序打乱Collections.shuffle(tour);}// 从当前路线中获取指定位置的城市public City getCity(int tourPosition) {return (City)tour.get(tourPosition);}// 将一个目的城市放置到当前路线的指定位置public void setCity(int tourPosition, City city) {tour.set(tourPosition, city);}// 获得当前路线上所有城市距离的总和public int getDistance(){int tourDistance = 0;for (int cityIndex=0; cityIndex < tourSize(); cityIndex++) {City fromCity = getCity(cityIndex);City destinationCity;if(cityIndex+1 < tourSize()){destinationCity = getCity(cityIndex+1);}else{destinationCity = getCity(0);}tourDistance += fromCity.distanceTo(destinationCity);}return tourDistance;}// 获得路线上城市的数量public int tourSize() {return tour.size();}@Overridepublic String toString() {String geneString = "|";for (int i = 0; i < tourSize(); i++) {geneString += getCity(i)+"|";}return geneString;}
}

1. 模拟退火算法

模拟退火算法其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。模拟退火算法是一种随机算法,并不一定能找到全局的最优解,但可以比较快的找到问题的近似最优解。

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;public class SimulatedAnnealing {// Calculate the acceptance probabilitypublic static double acceptanceProbability(int energy, int newEnergy, double temperature) {// If the new solution is better, accept itif (newEnergy < energy) {return 1.0;}// If the new solution is worse, calculate an acceptance probabilityreturn Math.exp((energy - newEnergy) / temperature);}public static void initCities() throws IOException {BufferedReader br = new BufferedReader(new FileReader("att48.tsp"));String line = null;while ( (line = br.readLine()) != null ) {String[] token = line.split(" ");City city = new City(Integer.parseInt(token[1]), Integer.parseInt(token[2]));CityManager.addCity(city);}}public static void main(String[] args) {try {initCities();} catch (IOException e) {// TODO Auto-generated catch blocke.printStackTrace();return;}// Set initial tempdouble temp = 1000;// Cooling ratedouble coolingRate = 0.002;// Initialize intial solutionTour currentSolution = new Tour();currentSolution.generateIndividual();System.out.println("Initial solution distance: " + currentSolution.getDistance());// Set as current bestTour best = new Tour(currentSolution.getTour());// Loop until system has cooledwhile (temp > 1) {// Create new neighbour tourTour newSolution = new Tour(currentSolution.getTour());// Get a random positions in the tourint tourPos1 = (int) (newSolution.tourSize() * Math.random());int tourPos2 = (int) (newSolution.tourSize() * Math.random());while (tourPos1 == tourPos2 ) {tourPos2 = (int) (newSolution.tourSize() * Math.random());}// Get the cities at selected positions in the tourCity citySwap1 = newSolution.getCity(tourPos1);City citySwap2 = newSolution.getCity(tourPos2);// Swap themnewSolution.setCity(tourPos2, citySwap1);newSolution.setCity(tourPos1, citySwap2);// Get energy of solutionsint currentEnergy = currentSolution.getDistance();int neighbourEnergy = newSolution.getDistance();// Decide if we should accept the neighbourif (acceptanceProbability(currentEnergy, neighbourEnergy, temp) > Math.random()) {currentSolution = new Tour(newSolution.getTour());}// Keep track of the best solution foundif (currentSolution.getDistance() < best.getDistance()) {best = new Tour(currentSolution.getTour());}// Cool systemtemp *= 1-coolingRate;}System.out.println("Final solution distance: " + best.getDistance());System.out.println("Tour: " + best);}
}

这篇关于旅行商问题(TSP)的启发式求解算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/994303

相关文章

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socket read timed out的问题

《如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socketreadtimedout的问题》:本文主要介绍解决Druid线程... 目录异常信息触发场景找到版本发布更新的说明从版本更新信息可以看到该默认逻辑已经去除总结异常信息触发场景复