论文阅读:基于改进 YOLOv5算法的密集动态目标检测方法

2024-05-16 03:20

本文主要是介绍论文阅读:基于改进 YOLOv5算法的密集动态目标检测方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

概要

Motivation

整体架构流程

技术细节

小结


论文地址:基于改进YOLOv5算法的密集动态目标检测方法 - 中国知网 (cnki.net)

概要

目的:提出一种基于 YOLOv5改进的检测算法,解决密集动态目标检测精度低及易漏检的问题。

方法:在 YOLOv5的主干网络中使用 QARepNeXt结构提高深度学习模型训练速度;引入 S2-MLPv2注意力机制改善遮挡情况下检测效果差的问题;将具有动态聚焦机制的边界回归损失函数 Wise-IoU 替代 原有损失函数提高收敛速度。

结果:通过在公开数据集上的实验验证,改进算法在密集行人检测任务中表现出了更高的检测精度、更低的漏检率和更好的检测效果。相较于原始YOLOv5s网络模型,改进后的算法模型在复杂环境下展示了更强的鲁棒性和泛化能力,能够有效应用于密集动态目标检测及其相关领域。

结论:通过引入QARepNeXt结构、S2-MLPv2注意力机制和Wise-IoU损失函数,优化了YOLOv5s网络,提升了密集动态目标检测的性能。这一改进算法在实际应用中具有重要的潜力,尤其在行人检测等密集场景下表现出色,为相关领域的研究提供了新的思路和方法。

Motivation

  • 密集动态目标检测,遮挡导致的检测精度低和漏检率高。
  • 于行人尺度较小,检测难 度也增加。

整体架构流程

一种基于改进YOLOv5s算法的密集动态目标检测方法。主要改进包括:

1. 主干网络优化:引入QARepNeXt模块,增强网络特征提取和融合能力,提高检测精度。
2. 特征融合阶段改进:加入S2-MLPv2注意力机制,有效提取图像关键信息,提高对遮挡目标的关注度。
3. 损失函数替换:采用Wise-IoU损失函数,提高模型的收敛能力和检测精度。

技术细节

YOLOv5原始主干网络采用3×3的卷积模块,对非密集场景下的目标识别任务具有出色的能力,但在密集场景和被识别物有遮挡的情况下很难提取到有效特征信息,为此论文研究对传统的 RepVGG 结构进行修改,引入更加友好的量化感知模块 QARepNeXt。

为使网络具有更好的量化性能,引用一种在 RepVGG 的基础上改进的网络结构 QARepVGG(Quantization-AwareRepVGG),不会在训练过程中遭受量化崩溃,与 RepVGG 结构相比其量化性能得到很大程度的提升。

为提高特征信息的利用率,研究引入 S2-MLPv2注意力机制模块。

在对画面中的目标进行检测时,由于视野内可能存在多个目标,算法会生成多个预测框。为了消除冗 余的预测框,通常需要采用非极大值抑制(Non-MaximumSuppression,NMS)方法。NMS算法会根据预 测框的置信度和重叠度进行筛选,保留置信度最高的预测框,并去除与其重叠度高的其他预测框,从而得 到最终的检测结果。这样可以有效地去除冗余的预测框,提高检测的准确性和效率。

小结

针对密集动态目标检测精度低及易漏检的问题,本研究提出了一种基于 YOLOv5s 网络改进的算法模型。改进的算法模型在以下几个方面进行了优化:

1. 主干网络优化:引入了量化性能更佳的 QARepNeXt 结构。QARepNeXt 结构通过优化网络量化性能,提高了特征提取能力。相比原始 YOLOv5s 网络模型,这种改进能够更有效地捕捉并表征图像中的重要特征。

2. 特征融合阶段改进:在特征融合阶段加入了 S2-MLPv2 注意力机制。S2-MLPv2 通过增强特征信息的利用率,提高了网络对遮挡目标的关注度。这使得网络在处理密集和动态目标时,能够更准确地进行检测,减少漏检现象。

3. 损失函数替换:原有网络的损失函数被替换为回归性能更优秀的 Wise-IoU 损失函数。Wise-IoU 损失函数能够更好地衡量预测框与真实框之间的重叠情况,提高检测精度和回收率。

4. 实验验证:在公开数据集上进行了一系列实验。实验结果表明,优化后的算法在测量精确度、回收率和平均精度等方面都有显著提升。相较于原始 YOLOv5s 网络,改进模型表现出了更强的鲁棒性和泛化能力。

综上所述,通过在主干网络、特征融合和损失函数等方面的改进,优化后的 YOLOv5s 算法模型有效提升了密集动态目标检测的精度和可靠性,适用于密集动态目标检测及其相关领域。

这篇关于论文阅读:基于改进 YOLOv5算法的密集动态目标检测方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/993732

相关文章

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v