python的多线程基础设施

2024-05-16 02:08

本文主要是介绍python的多线程基础设施,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当我们在使用线程时,存在以下基本的多线程编程的概念:

  • lock:多个线程访问临界资源时,为满足线程安全必须保证访问临界资源的代码同一时刻仅有一个线程执行。
  • condition:传递消息的工具。线程中的条件,不满足条件就wait,获得条件就执行。
  • wait():在条件实例中可用的wait()。
  • notify() / notifyAll():在条件实例中可用的notify()通知一个其他等待的线程或其他所有线程,看当前线程对临界资源状态的改变是否与所有线程有关,一般只需要通知一个其他线程即可。

python提供的多线程基础设施与其他语言的类似,都是在上述线程环境下的实现。下面是多线程实现的生产者消费者模型。

1、锁的使用

from threading import Thread, Lock
import time
import randomqueue = []
lock = Lock()class ProducerThread(Thread):def run(self):nums = range(5)while True:num = random.choice(nums)lock.acquire()queue.append(num)print "Produced", num lock.release()time.sleep(random.random())class ConsumerThread(Thread):def run(self):while True:lock.acquire()if not queue:print "Nothing in queue, but consumer will try to consume"num = queue.pop(0)print "Consumed", num lock.release()time.sleep(random.random())ProducerThread().start()
ConsumerThread().start()

lock提供的release和lock方法将对临界资源queue的访问代码进行了保护,使得不会存在同时访问临界资源的问题。但是,仅仅使用锁会出现问题,因为多个线程之间需要传递消息,(注意,传递数据使用全局变量临界资源就可以,但传递消息必须要新的工具),需要使用线程传递消息的工具condition来实现。

2、传递消息

python的多线程传递消息机制condition内含了lock,其acquire()和release()方法在内部调用了lock的acquire()和release()。所以在python中可以用condiction实例取代lock实例,但lock的行为不会改变。

from threading import Thread, Condition
import random
import timequeue = []
MAX_NUM = 10
queue_avalible = Condition()class Producer(Thread):def run(self):nums = range(MAX_NUM)while True:num = random.choice(nums)queue_avalible.acquire()if len(queue) == MAX_NUM:print "queue is full, waiting for consuming"queue_avalible.wait()queue.append(num)print "Produced ", numqueue_avalible.notify()queue_avalible.release()class Consumer(Thread):def run(self):nums = range(MAX_NUM)while True:queue_avalible.acquire()if len(queue) == 0:print "queue is empty, waiting for producing"queue_avalible.wait()num = queue.pop(0)print "Consumed ", numqueue_avalible.notify()queue_avalible.release()Producer().start()
Consumer().start()

上述使用的是Condition内部自带的lock来进行加锁解锁,但是这样有一个需要注意的问题,调用notify的时候,其他等待的线程并不能马上运行,因为使用的是同一个queue_avalible,当前调用notify之后再调用release之后其他等待线程才能运行。下面是python文档的原文:

Note: the notify() and notifyAll() methods don’t release the lock; this means that the thread or threads awakened will not return from their wait() call immediately, but only when the thread that called notify() or notifyAll() finally relinquishes ownership of the lock.
An awakened thread does not actually return from its wait() call until it can reacquire the lock. Since notify() does not release the lock, its caller should.

3、Queue封装

python中的Queue模块对多线程操作的队列进行了封装,非常方便的使用它能快速构建程序。

The Queue module implements multi-producer, multi-consumer queues. It is especially useful in threaded programming when information must be exchanged safely between multiple threads. The Queue class in this module implements all the required locking semantics.

支持如下三种队列:

  • class Queue.Queue(maxsize=0)
    FIFO队列类。 maxsize 是最大长度,达到上限之后调用put操作会被阻塞。小于等于0的maxsize将是无限大的队列。
  • class Queue.LifoQueue(maxsize=0)
    LIFO队列类。 maxsize 是最大长度,达到上限之后调用put操作会被阻塞。小于等于0的maxsize将是无限大的队列。
  • class Queue.PriorityQueue(maxsize=0)
    优先队列类。 maxsize 是最大长度,达到上限之后调用put操作会被阻塞。小于等于0的maxsize将是无限大的队列。

另外提供两种异常:
Queue.Empty
当队列为空是,调用了non-blocking get() (or get_nowait()) 函数时发生
- Queue.Full
当队列满之后,调用了 non-blocking put() (or put_nowait()) 函数时发生

提供的方法如下:
- Queue.qsize():返回队列大小
- Queue.empty()
- Queue.full()
- Queue.get([block[, timeout]]):获取一个值,如果block为true并且timeout为None,就会在队列为空时阻塞只到有元素;如果timeout为正整数,将会最多阻塞设置的时间,然后raises Empty exception。如果block为False,那么直接在有元素时返回该元素,否则直接抛出Empty异常。
- Queue.get_nowait():相当于get(false)
- Queue.put(item[, block[, timeout]]):插入一个值,如果block为true并且timeout为None,就会在队列满了之后阻塞只到有空闲位置;如果timeout为正整数,将会最多阻塞设置的时间,然后raises Full exception。如果block为False,那么直接在有空闲位置时插入,否则直接抛出Full异常。
- Queue.put_nowait(item):相当于put(item, false)
- Queue.task_done():检查后台线程是否完成
- Queue.join():等待后台线程完成

这篇关于python的多线程基础设施的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/993571

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数