为pytorch前向和反向的Tensor生成描述性统计

2024-05-15 23:36

本文主要是介绍为pytorch前向和反向的Tensor生成描述性统计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为pytorch前向和反向的Tensor生成描述性统计

  • 代码

在调试Megatron-DeepSpeed的精度时,我们希望对比每一层前向和反向传播的输入输出误差。然而,由于数据量过大,直接保存所有数据不太现实。因此,我们生成了输入输出tensor的描述性统计信息,并等间隔抽样N个数据点,以比较这些点的相对误差,从而查找精度异常的位置。为了准确定位,我们通过类名和对象ID生成唯一的对象名称(形式为[类名-创建的第几个])以及前向和反向传播的次数。通过保存上述信息,我们可以详细记录并回溯当时的实际输入输出数据。

代码

cat > linear_test.py <<-'EOF'
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
from datetime import datetime# 设置设备
device = "cpu"if torch.cuda.is_available():device = "cuda:4"def is_tensor(val):# 判断是否为tensor或Parameterreturn isinstance(val, (torch.Tensor, nn.Parameter))def describe_tensor(tensor):# 返回tensor的描述,包括形状和部分数据统计信息shape = list(tensor.shape)tensor_data = tensor.cpu().float().detach().numpy().ravel()num_points = min(16, len(tensor_data))indices = np.linspace(0, len(tensor_data) - 1, num_points, dtype=int)stats = [np.max(tensor_data), np.min(tensor_data), np.mean(tensor_data), np.std(tensor_data)]sample_data = tensor_data[indices]stats_str = ",".join(f"{x:.5f}" for x in stats)sample_str = ",".join(f"{x:.5f}" for x in sample_data)return f"{shape}-{stats_str},{sample_str}"def generate_random_data(shape):# 生成符合指定形状的随机数据max_val, min_val, mean, std = 0.04025, -0.04651, 0.0, 0.00134data = np.random.normal(mean, std, shape)data = (data - data.min()) / (data.max() - data.min()) * (max_val - min_val) + min_valreturn dataindex_counter = 0def log_tensor_data(name, tensor):# 打印tensor的日志数据global index_counterindex_counter += 1timestamp = datetime.now().strftime("%H%M%S%f")if is_tensor(tensor):print(f"{timestamp},{index_counter},{name},0,{describe_tensor(tensor)}")elif isinstance(tensor, (tuple, list)):for idx, t in enumerate(tensor):if is_tensor(t):print(f"{timestamp},{index_counter},{name},{idx},{describe_tensor(t)}")def log_gradient(model):# 打印模型参数梯度信息for name, param in model.named_parameters():if param.grad is not None:log_tensor_data(f"grad-{name}", param.grad)# 对象和类名缓存
object_cache = {}
class_name_count = {}def get_unique_name(class_name, obj_id):# 生成唯一的对象名称if class_name not in class_name_count:class_name_count[class_name] = 0uid = f"{class_name}_{obj_id}"if uid not in object_cache:class_name_count[class_name] += 1object_cache[uid] = {"idx": class_name_count[class_name]}return f'{class_name}-{object_cache[uid]["idx"]}'def initialize_module_attributes(module):# 初始化模块属性if not hasattr(module, 'uuid'):module.uuid = get_unique_name(module.__class__.__name__, id(module))if not hasattr(module, 'backward_step'):module.backward_step = 0if not hasattr(module, 'forward_step'):module.forward_step = 0def forward_decorator():# 包装forward函数的修饰器def decorator(func):def wrapped(*args, **kwargs):module = args[0]initialize_module_attributes(module)module.forward_step += 1log_tensor_data(f"forward-{module.uuid}-{module.forward_step}-input", args)output = func(*args, **kwargs)log_tensor_data(f"forward-{module.uuid}-{module.forward_step}-output", output)return outputreturn wrappedreturn decoratordef pre_backward_hook(module, grad_input):# 反向传播前的钩子函数initialize_module_attributes(module)module.backward_step += 1log_tensor_data(f"backward-{module.uuid}-{module.backward_step}-input", grad_input)def post_backward_hook(module, grad_input, grad_output):# 反向传播后的钩子函数initialize_module_attributes(module)log_tensor_data(f"backward-{module.uuid}-{module.backward_step}-output", grad_output)def register_backward_hooks(module):# 注册反向传播钩子module.register_full_backward_pre_hook(pre_backward_hook)module.register_full_backward_hook(post_backward_hook)class CustomLinear(nn.Module):def __init__(self, shape):super(CustomLinear, self).__init__()weight_data = torch.from_numpy(generate_random_data(shape)).half().to(device)self.weight = nn.Parameter(weight_data)self.register_parameter('bias', None)register_backward_hooks(self)@forward_decorator()def forward(self, input_):return F.linear(input_, self.weight, self.bias)class MyModel(nn.Module):def __init__(self):super(MyModel, self).__init__()self.layer1 = CustomLinear((5504, 4096))self.layer2 = CustomLinear((4096, 5504))@forward_decorator()def forward(self, input_):out = self.layer1(input_)out = self.layer2(out)return out
# 设置随机种子
np.random.seed(1)
torch.manual_seed(2)# 创建和训练模型
model = MyModel().half().to(device)
model.train()input_data = torch.from_numpy(generate_random_data((1024, 12, 4096))).half().to(device)
target_data = torch.from_numpy(generate_random_data((1024, 12, 4096))).half().to(device)for _ in range(2):outputs = model(input_data)outputs.backward(target_data)  # 使用全一的梯度来反向传播log_gradient(model)
EOF
python3 linear_test.py

这篇关于为pytorch前向和反向的Tensor生成描述性统计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/993236

相关文章

Vue3 如何通过json配置生成查询表单

《Vue3如何通过json配置生成查询表单》本文给大家介绍Vue3如何通过json配置生成查询表单,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录功能实现背景项目代码案例功能实现背景通过vue3实现后台管理项目一定含有表格功能,通常离不开表单

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计

Python使用python-pptx自动化操作和生成PPT

《Python使用python-pptx自动化操作和生成PPT》这篇文章主要为大家详细介绍了如何使用python-pptx库实现PPT自动化,并提供实用的代码示例和应用场景,感兴趣的小伙伴可以跟随小编... 目录使用python-pptx操作PPT文档安装python-pptx基础概念创建新的PPT文档查看

在ASP.NET项目中如何使用C#生成二维码

《在ASP.NET项目中如何使用C#生成二维码》二维码(QRCode)已广泛应用于网址分享,支付链接等场景,本文将以ASP.NET为示例,演示如何实现输入文本/URL,生成二维码,在线显示与下载的完整... 目录创建前端页面(Index.cshtml)后端二维码生成逻辑(Index.cshtml.cs)总结

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

SQLServer中生成雪花ID(Snowflake ID)的实现方法

《SQLServer中生成雪花ID(SnowflakeID)的实现方法》:本文主要介绍在SQLServer中生成雪花ID(SnowflakeID)的实现方法,文中通过示例代码介绍的非常详细,... 目录前言认识雪花ID雪花ID的核心特点雪花ID的结构(64位)雪花ID的优势雪花ID的局限性雪花ID的应用场景