无向连通网的最小生成树算法[第2部分]

2024-05-15 21:32

本文主要是介绍无向连通网的最小生成树算法[第2部分],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

4.2 primMst算法及时间复杂度分析

void primMst(int **AdjMatrix,EDGENODE *edgeSet,int n,int start)
{int iter,minPos,to;EDGENODE edge;initEdgeSet(AdjMatrix,edgeSet,n,start);             //初始化边集合for(iter=0;iter<n-1;iter++){minPos=chooseEdge(edgeSet,n,iter);          //从边集中选择取值最小边edge=edgeSet[minPos];                       //将选择的最小边edgeSet[iter]edgeSet[minPos]=edgeSet[iter];          edgeSet[iter]=edge;to=edgeSet[iter].to;                            //将选择的边结点加入U集合modfiyEdgeSet(AdjMatrix,edgeSet,n,iter,to); //调整候选边结点}
}

时间复杂度分析:该普利姆算法程序实现的时间复杂度主要由primMst函数、initEdgeSet边集初始化函数、chooseEdge边选择函数、modfiyEdgeSet候选边集调整函数构成,因此基本程序执行语句的执行次数如下:
这里写图片描述
4.3 Kruskal算法及主要的功能函数模块说明
(1)creatMatrix函数模块
函数原型:void creatMatrix(int **AdjMatrix,EDGENODE *edgeSet,int n,int e);
函数功能:以文件读入或者键盘输入的方式构造邻接矩阵,AdjMatrix表示邻接矩阵,edgeSet表示边集,n和e分别表示图的顶点数和边数。
(2)printMatrix函数模块
函数原型:void printMatrix(int **AdjMatrix,int n);
函数功能:输出邻接矩阵,AdjMatrix表示邻接矩阵,n表示图的顶点数。
(3)printEdgeSet函数模块
函数原型:void printEdgeSet(EDGENODE *edgeSet,int e);
函数功能:输出边集合中的所有边数据,其中edgeSet表示边集合,e表示边的数量。
(4)findRootEdge函数模块
函数原型:int findRootEdge(int nodeNumber);
函数功能:查找顶点的所在并查集的根,其中nodeNumber表示顶点编号。
(5)mergeEdge函数模块
函数原型:int mergeEdge(int nodeFrom,int nodeTo);
函数功能:判断顶点from和to是否属于同一连通分量,同时对连通分量进行合并。其中nodeFrom和nodeTo分别为所选边的两个顶点。
(6)kruskalMst最小生成树函数模块
函数原型:void kruskalMst(EDGENODE *edgeSet,int n,int e);
函数功能:依次从候选边集中选取权值最小边构造最小生成树,其中edgeSet为边集,n和e分别为图中的顶点数和边数。
4.4 kruskal算法及时间复杂度分析

void kruskalMst(EDGENODE *edgeSet,int n,int e)
{int index=0;int countEdge=0;int minCost=0;cout<<"------------------------------------"<<endl;printEdgeSet(edgeSet,e);sort(edgeSet,edgeSet+e);                                //对边集进行快速排序cout<<"------------------------------------"<<endl;printEdgeSet(edgeSet,e);cout<<"------------------------------------"<<endl;while(index<e){int from=edgeSet[index].from;int to=edgeSet[index].to;int cost=edgeSet[index].cost;if(mergeEdge(from,to)==0)    //利用并查集判断环路,同时对查找路径进行压缩合并{countEdge++;minCost+=cost;cout<<"("<<from<<","<<to<<") "<<cost<<endl;index++;}elseindex++;if(countEdge==n-1)break;}if(index<e)                                             cout<<"minCost: "<<minCost<<endl;elsecout<<"The Graph is disconnected!"<<endl;    //index>=e则不能构造最小生成树
}

时间复杂度分析:该克鲁斯卡尔算法的时间复杂度主要由sort快速排序函数、kruskalMst函数、mergeEdge函数、findRootEdge函数构成,各部分时间复杂度如下:
这里写图片描述
5 程序测试
为了方便测试,将图1中边结点信息存入文本文件,程序在运行时自动读入数据,数据格式如下,其中第一行为图中结点个数与边总数,第二行到最后一行为边的顶点编号和边的权值。
这里写图片描述
4.1 Prim算法程序运行测试
这里写图片描述
这里写图片描述
这里写图片描述
4.2 Kruskal算法程序运行测试
这里写图片描述
5 总结
这里写图片描述
参考文献:
[1-2] 孙凌宇, 冷明, 谭云兰等. 赋权有向图的最小生成树算法[J]. 计算机工程, 2010, 36(2): 61-66.
[3] 徐建军, 沙力妮, 张艳等. 一种新的最小生成树算法[J]. 电力系统保护与控制, 2011, 39(14): 107-112.
[4] 徐凤生. 数据结构与算法C语言版[M]. 北京: 机械工业出版社, 100-124.
[5] Anany Levitin. 算法设计与分析基础(第3版)[M] 潘彦译. 北京: 清华大学出版社, 2015, 250-259.
[6] 江波, 张黎. 基于Prim算法的最小生成树优化研究[J]. 计算机工程与设计, 2009, 30(13): 3244-3247.
[7] 宋国明, 王厚军, 姜书艳等. 最小生成树SVM的模拟电路故障诊断方法[J]. 电子科技大学学报, 2012, 41(3): 412-417.
[8] 谭浩强. C程序设计第三版[M]. 北京: 清华大学出版社, 2009, 20-33.
[9] 吴艳, 赵端阳, 曹平等. 数据结构(用C++语言描述)[M]. 北京: 北京邮电大学出版社, 2016, 10-15.

这篇关于无向连通网的最小生成树算法[第2部分]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/992977

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

python如何生成指定文件大小

《python如何生成指定文件大小》:本文主要介绍python如何生成指定文件大小的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python生成指定文件大小方法一(速度最快)方法二(中等速度)方法三(生成可读文本文件–较慢)方法四(使用内存映射高效生成

Maven项目中集成数据库文档生成工具的操作步骤

《Maven项目中集成数据库文档生成工具的操作步骤》在Maven项目中,可以通过集成数据库文档生成工具来自动生成数据库文档,本文为大家整理了使用screw-maven-plugin(推荐)的完... 目录1. 添加插件配置到 pom.XML2. 配置数据库信息3. 执行生成命令4. 高级配置选项5. 注意事

MybatisX快速生成增删改查的方法示例

《MybatisX快速生成增删改查的方法示例》MybatisX是基于IDEA的MyBatis/MyBatis-Plus开发插件,本文主要介绍了MybatisX快速生成增删改查的方法示例,文中通过示例代... 目录1 安装2 基本功能2.1 XML跳转2.2 代码生成2.2.1 生成.xml中的sql语句头2

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

SpringBoot实现二维码生成的详细步骤与完整代码

《SpringBoot实现二维码生成的详细步骤与完整代码》如今,二维码的应用场景非常广泛,从支付到信息分享,二维码都扮演着重要角色,SpringBoot是一个非常流行的Java基于Spring框架的微... 目录一、环境搭建二、创建 Spring Boot 项目三、引入二维码生成依赖四、编写二维码生成代码五

Android与iOS设备MAC地址生成原理及Java实现详解

《Android与iOS设备MAC地址生成原理及Java实现详解》在无线网络通信中,MAC(MediaAccessControl)地址是设备的唯一网络标识符,本文主要介绍了Android与iOS设备M... 目录引言1. MAC地址基础1.1 MAC地址的组成1.2 MAC地址的分类2. android与I

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ