半自动标注(使用自己的分割或检测模型推理完得到的矩阵再生成json文件)

本文主要是介绍半自动标注(使用自己的分割或检测模型推理完得到的矩阵再生成json文件),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言
都知道标注很麻烦、很累,不然先训练一批,然后推理得到它的掩码图,先生成自动标注,再人工手动修改也许会快很多

半自动标注代码

这是我自己写的,是labelme的格式,大家想要修改成自己的json格式可以修改json_dict_init与dict_init函数

默认大家已经得到自己图片经过模型推理之后的掩码图了,掩码图上面生成的像素应该是0,1,2,3. 分别对应自己训练的时候的标签

import cv2
import sys
import base64
import cv2
import json
import time
import os
from tqdm import tqdm
from PIL import Image
import numpy as npdef dict_init(label_name):temp_dict = {"label": label_name,"line_color": None,"fill_color": None,"points":[],"shape_type": "polygon","flags": {}}return  temp_dictdef json_dict_init(num,height,width,img):temp_dict = {"version": "3.16.2","flags": {},"shapes": [],"lineColor": [0,255,0,128],"fillColor": [255,0,0,128],"imagePath": "..\\img\\{}.jpg".format(num),#原图像数据通过b64编码生成的字符串数据,可以再次解码成图片"imageData":img,"imageHeight": height,"imageWidth": width}return  temp_dictdef image_to_base64(image_path):# 读取二进制图片,获得原始字节码with open(image_path, 'rb') as jpg_file:byte_content = jpg_file.read()# 把原始字节码编码成base64字节码base64_bytes = base64.b64encode(byte_content)# 把base64字节码解码成utf-8格式的字符串base64_string = base64_bytes.decode('utf-8')return base64_string# 定义一个函数,用于判断两个点是否相邻
def is_adjacent(pt1, pt2):x1, y1 = pt1x2, y2 = pt2return abs(x1 - x2) <= 8 and abs(y1 - y2) <= 8def main():img_path = "D:/data_val/new/temp/img"label_path = "D:/data_val/new/temp/label"json_save_path = 'D:/data_val/new/temp/json'os.makedirs(json_save_path,exist_ok=True)# 放入你的标签名 例如 你的掩码图 像素是1 1对应的就是phone 像素是2 2就是linelabel_name_list = ['phone','line']img_list = os.listdir(img_path)pbar = tqdm(total=len(img_list))for filename in img_list:name = filename.split(".")[0]# print("*"*10)# print(f'{filename}')#label图label = Image.open(f'{label_path}/{name}.png')label = np.array(label)#输出自己的label有多少种像素# unique_values = np.unique(label)# print('')# print(unique_values)# print('')height  = label.shape[0]width   = label.shape[1]base64_string = image_to_base64(f'{img_path}/{filename}')json_dict = json_dict_init(name,height,width,base64_string)contours, hierarchy = cv2.findContours(label, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)background_flag =Falseif (len(contours) == 0):print("如果未识别到 则变成背景")shapes_dict = dict_init("_background_")left_top, left_botton = [10, 10], [10, height - 10]right_botton, right_top = [width - 10, height - 10], [width - 10, 10]shapes_dict['points'] = [left_top, left_botton, right_botton, right_top]json_dict["shapes"].append(shapes_dict)else:for i,clasee_name in enumerate(label_name_list):temp = label.copy()temp[temp!=(i+1)] = 0contours, hierarchy = cv2.findContours(temp, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)if (len(contours) == 0):continueelse:count = 0for contour in contours:shapes_dict = dict_init(clasee_name)count = count + 1#10 20#语义分割approxCourve = cv2.approxPolyDP(contour, 3, True)for Courve in approxCourve:point = Courve[0]x, y = pointx = int(x)y = int(y)temp_list = []temp_list.append(x)temp_list.append(y)shapes_dict["points"].append(temp_list)#目标检测 这里只写到生成检测框的四个点 根据自己需求填进去# rect = cv2.minAreaRect(contour)# box = cv2.boxPoints(rect)# # print(box)# # 轮廓必须是整数, 不能是小数, 所以转化为整数# box = np.round(box).astype('int64')# left_point_x = np.min(box[:, 0])# right_point_x = np.max(box[:, 0])# top_point_y = np.min(box[:, 1])# bottom_point_y = np.max(box[:, 1])json_dict["shapes"].append(shapes_dict)with open(f'{json_save_path}/{name}.json', "w", encoding='utf-8') as f:f.write(json.dumps(json_dict, ensure_ascii=False))pbar.update(1)if __name__ == "__main__":main()

这篇关于半自动标注(使用自己的分割或检测模型推理完得到的矩阵再生成json文件)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/992722

相关文章

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows