Python 全栈体系【四阶】(四十四)

2024-05-15 18:04

本文主要是介绍Python 全栈体系【四阶】(四十四),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第五章 深度学习

九、图像分割

3. 常用模型

3.4 DeepLab 系列
3.4.3 DeepLab v3(2017)

在DeepLab v3中,主要进行了以下改进:

  • 使用更深的网络结构,以及串联不同膨胀率的空洞卷积,来获取更多的上下文信息
  • 优化Atrous Spatial Pyramid Pooling
  • 去掉条件随机场
3.4.3.1 串联结构

在这里插入图片描述

上图演示了ResNet结构中,不使用空洞卷积(上)和使用不同膨胀率的空洞卷积(下)的差异,通过在Block3后使用不同膨胀率的空洞卷积,保证在扩大视野的情况下,保证特征图的分辨率。

3.4.3.2 并行结构

作者通过实验发现,膨胀率越大,卷积核中的有效权重越少,当膨胀率足够大时,只有卷积核最中间的权重有效,即退化成了1x1卷积核,并不能获取到全局的context信息。为了解决这个问题,作者在最后一个特征上使用了全局平均池化(global everage pooling)(包含1x1卷积核,输出256个通道,正则化,通过bilinear上采样还原到对应尺度)。修改后的ASPP结构图如下:

在这里插入图片描述

3.4.3.3 Mult-grid策略

作者考虑了multi-grid方法,即每个block中的三个卷积有各自unit rate,例如Multi Grid = (1, 2, 4),block的dilate rate=2,则block中每个卷积的实际膨胀率=2* (1, 2, 4)=(2,4,8)。

3.4.3.4 训练策略
  • 采用变化的学习率,学习率衰减策略如下(其中,power设置为0.9):

( 1 − i t e r m a x _ i t e r ) p o w e r (1 - \frac{iter}{max\_iter})^{power} (1max_iteriter)power

  • 裁剪。在训练和测试期间,在PASCAL VOC 2012数据集上采用的裁剪尺寸为513,以保证更大的膨胀率有效。
  • Batch Normalization。先在增强数据集上output stride = 16(输入图像与输出特征大小的比例),batch size=16,BN参数衰减为0.9997,训练30k个iter。之后在官方PASCAL VOC 2012的trainval集上冻结BN参数, output stride = 8,batch size=8,训练30k个iter。
  • 采用上采样真值计算Loss。DeepLabv1/v2中都是下采样的真值来计算loss,这样会让细节标记产生损失,本模型使用上采样最后的输出结果计算。
  • 数据随机处理。在训练阶段,对输入的图像进行随机缩放(缩放率在0.5-2.0之间),并随机执行左右翻转。
3.4.3.5 效果
  • ResNet-50和ResNet-101结构比较,更多的级联采样能获得 更高的性能
    在这里插入图片描述

  • 各种优化测略效果实验
    在这里插入图片描述
    其中,MG表示Multi-grid,ASPP 表示Atrous spatial pyramid pooling ,OS表示output stride ,MS表示Multiscale inputs during test ,Flip表示镜像增强,COCO表示MS-COCO 预训练模型。

  • 其它模型对比(PASCAL VOC 2012 测试集)
    在这里插入图片描述

  • 分割效果展示
    在这里插入图片描述

3.4.4 DeepLab v3+
3.4.4.1 深度可分离卷积

采用深度可分离卷积,大幅度降低参数数量。

在这里插入图片描述

普通卷积。对一个三通道图像,采用4个3*3*3的卷积核,获得4个特征图,总参数量为4 × 3 × 3 × 3 = 108

在这里插入图片描述

深度可分离卷积第一步

在这里插入图片描述

深度可分离卷积第二步

深度可分离卷积分为两步:第一步逐通道卷积(参数数量3 × 3 × 3 = 27),第二步逐点卷积(参数数量1 × 1 × 3 × 4 = 12),输出4个特征图,共39个参数。

3.4.4.2 网络结构

在这里插入图片描述

  • Encoder:同DeepLabv3。

  • Decoder:先把encoder的结果上采样4倍,然后与resnet中下采样前的Conv2特征进行concat融合,再进行3*3卷积,最后上采样4倍得到输出结果。

  • 融合低层次信息前,先进行1*1卷积,目的是减少通道数,进行降维。

  • 主干网部分:采用更深的Xception网络,所有max pooling结构为stride=2的深度可卷积代替;每个3*3的depthwise卷积都跟BN和Relu。改进后的主干网结构如下:

在这里插入图片描述

3.4.4.3 结果
  • 与其它模型的对比

在这里插入图片描述

  • 在Cityspaces数据集上实验结果如下:

在这里插入图片描述

  • 分割效果展示(最后一行是失败的分割)

在这里插入图片描述

3.5 其它模型

在这里插入图片描述

4. 数据集

4.1 VOC2012

Pascal VOC 2012:有 20 类目标,这些目标包括人类、机动车类以及其他类,可用于目标类别或背景的分割。

4.2 MSCOCO

是一个新的图像识别、分割和图像语义数据集,是一个大规模的图像识别、分割、标注数据集。它可以用于多种竞赛,与本领域最相关的是检测部分,因为其一部分是致力于解决分割问题的。该竞赛包含了超过80个物体类别。

4.3 Cityscapes

50 个城市的城市场景语义理解数据集,适用于汽车自动驾驶的训练数据集,包括19种都市街道场景:road、side-walk、building、wal、fence、pole、traficlight、trafic sign、vegetation、terain、sky、person、rider、car、truck、bus、train、motorcycle 和 bicycle。该数据库中用于训练和校验的精细标注的图片数量为3475,同时也包含了 2 万张粗糙的标记图片。

4.4 Pascal Context

有 400 多类的室内和室外场景。

4.5 Stanford Background Dataset

至少有一个前景物体的一组户外场景。

5. 图像分割标注工具

labelme
  • 安装

    pip3 install labelme
    
  • 运行

    labelme
    
  • 运行界面

在这里插入图片描述

6. 代码实现

见专栏 -> 全栈资料包 -> 资源包/03_dl/DeepLab3_plus.zip

7. 附录:术语表

英文简称英文全称中文名称
Semantic Segmentation语义分割
Instance Segmentation实例分割
Panoptic Segmentation全景分割
ASPPAstrous Spatial Pyramid Pooling空洞金字塔池化
FOVField of View视野
CRFFully-connected Conditional Random Field全连接条件随机场
DSCDepthwise Separable Convolution深度可分离卷积

这篇关于Python 全栈体系【四阶】(四十四)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/992536

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统