Python 全栈体系【四阶】(四十三)

2024-05-15 11:44

本文主要是介绍Python 全栈体系【四阶】(四十三),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第五章 深度学习

九、图像分割

3. 常用模型

3.4 DeepLab 系列
3.4.1 DeepLab v1(2015)
3.4.1.1 概述

图像分割和图像分类不一样,要对图像每个像素进行精确分类。在使用CNN对图像进行卷积、池化过程中,会导致特征图尺寸大幅度下降、分辨率降低,通过低分辨率特征图上采样生成原图的像素分类信息,容易导致信息丢失,分割边界不精确。DeepLab v1采用了空洞卷积、条件随机场等技术,有效提升了分割准确率。在 Pascal VOC 2012 的测试集 IOU 上达到了 71.6%,排名第一。速度方面,在GPU设备下推理可达每秒8帧。

3.4.1.2 空洞卷积

Dilated/Atrous Convolution(中文叫做空洞卷积或者膨胀卷积) ,是在标准的 convolution map 里注入空洞,以此来增加感受野。以下是一个空洞卷积示例图:

在这里插入图片描述

空洞卷积示例图

在空洞卷积中,通过添加空洞,在不增加参数、不进行降采样的情况下,增加感受野。空洞卷积有两种理解,一是可以理解为将卷积核扩展,如图卷积核为 3*3 但是这里将卷积核变为 5*5 即在卷积核每行每列中间加0。二是理解为在特征图上每隔1行或一列取数与 3*3 卷积核进行卷积。当不填充空洞时,dilation rate为1,当填充1时,dilation rate为2,当填充2时,dilation rate为3。如下图所示:

在这里插入图片描述

不同膨胀率的空洞卷积

空洞卷积最初的提出是为了解决图像分割的问题而提出的,常见的图像分割算法通常使用池化层和卷积层来增加感受野(Receptive Filed),同时也缩小了特征图尺寸(resolution),然后再利用上采样还原图像尺寸,特征图缩小再放大的过程造成了精度上的损失,因此需要一种操作可以在增加感受野的同时保持特征图的尺寸不变,从而代替下采样和上采样操作。

3.4.1.3 条件随机场

条件随机场(Conditional random field,CRF)是给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机变量构成马尔可夫随机场。

马尔科夫随机场是具有马尔科夫特性的随机场。马尔科夫性质指的是一个随机变量序列按时间先后关系依次排开的时候,第N+1时刻的分布特性,与N时刻以前的随机变量的取值无关。拿天气来打个比方。如果我们假定天气是马尔可夫的,其意思就是我们假设今天的天气仅仅与昨天的天气存在概率上的关联,而与前天及前天以前的天气没有关系。其它如传染病和谣言的传播规律,就是具有马尔可夫性质的。

3.4.1.4 网络结构

DeepLab v1使用VGG-16作为基础模型,为了更适合图像分割任务,做出了以下修改:

  • 将最后三个全连接层(fc6, fc7, fc8)改成卷积层
  • 将最后两个池化层(pool4, pool5)步长由2改成1
  • 将最后三个卷积层(conv5_1, conv5_2, conv5_3)的dilate rate 设置为2
  • 输出层通道数改为21(20个类别,1个背景)
3.4.1.5 能量函数

在这里插入图片描述

条件随机场对分割边沿的改善效果

DeepLab v1使用了全连接条件随机场(Fully-connected Conditional Random Field)来保证分类准确和位置准确。其能量函数:

E ( x ) = ∑ i θ i ( x i ) + ∑ i j θ i j ( x i , x j ) E(x)=\sum_i \theta_i(x_i) + \sum_{ij} \theta_{ij} (x_i, x_j) E(x)=iθi(xi)+ijθij(xi,xj)

训练的目标要最小化能量函数,函数第一项:

θ i ( x i ) = − l o g P ( x i ) \theta_i(x_i) = -logP(x_i) θi(xi)=logP(xi)

第一项用来保证分类的准确率,其中 x i x_i xi表示像素的标签值, P ( x i ) P(x_i) P(xi)表示DCNN的计算结果,准确率越高P(x)越接近1,该项值越小。函数第二项:

θ i j ( x i , x j ) = μ ( x i , x j ) ∑ m = 1 K w m . k m ( f i , f j ) μ ( x i , x j ) = 1 i f x i ≠ x j , o t h e r w i s e 0 \theta_{ij}(x_i, x_j) = \mu (x_i, x_j) \sum_{m=1}^{K} w_m.k^m(f_i, f_j) \\ \mu (x_i, x_j) = 1 \ \ if \ \ x_i \ne x_j,otherwise \ 0 θij(xi,xj)=μ(xi,xj)m=1Kwm.km(fi,fj)μ(xi,xj)=1  if  xi=xjotherwise 0

其中, μ ( x i , x j ) \mu(x_i, x_j) μ(xi,xj)表示只考虑标签不相同的两个像素点, k m ( f i , f j ) k^m (f_i, f_j) km(fi,fj)为一个高斯核函数,具体表示为:

w 1 e x p ( − ∣ ∣ p i − p j ∣ ∣ 2 2 σ α 2 − ∣ ∣ I i − I j ∣ ∣ 2 2 σ β 2 ) + w 2 e x p ( − ∣ ∣ p i − p j ∣ ∣ 2 2 σ γ 2 ) w_1 \ \ exp(-\frac{||p_i - p_j||^2}{2 \sigma_{\alpha}^2}-\frac{||I_i - I_j||^2}{2 \sigma_{\beta}^2}) + w_2 \ \ exp(-\frac{||p_i - p_j||^2}{2 \sigma_{\gamma}^2}) w1  exp(2σα2∣∣pipj22σβ2∣∣IiIj2)+w2  exp(2σγ2∣∣pipj2)

此函数主要由两个像素点的位置和颜色决定,位置为主、颜色为辅。该公式第一部分由位置(p表示)、颜色共同确定(I表示),第二项由位置确定, σ α , σ β , σ γ \sigma_\alpha, \sigma_\beta, \sigma_\gamma σα,σβ,σγ控制高斯核的比例。

在这里插入图片描述

条件随机场边沿精修效果
3.4.1.6 效果
  • 自对比试验

在这里插入图片描述

左表为采用不同策略下的IOU均值,其中,MSc表示多尺度融合,CRF表示条件随机场,LargFOV表大范围视野。右表为其它模型与该模型各种策略对比。

  • 与FCN-8s和TTI-Zoomout-16的效果对比

在这里插入图片描述

从上到下依次为原图、真实标记、被对比的模型分割效果、DeepLab-CRF分割效果。

3.4.2 DeepLab v2(2017)

DeepLab v2在DeepLab v1的基础上,主要引入了ASPP(Atrous Spatial Pyramid Pooling,膨胀空间金字塔池化)策略,在给定的输入上以不同采样率的空洞卷积并行采样,相当于以多个比例捕捉图像的上下文,从而获得更好的分割性能。ASPP原理如下图所示:

在这里插入图片描述

以下是PASCAL VOC 2012数据集上不同kernel size以及不同大小的膨胀率(atrous sampling rate)的实验对比:

在这里插入图片描述

以下是PASCAL VOC 2012数据集上分割效果展示:

在这里插入图片描述

以下是使用ResNet-101在PASCAL VOC 2012数据集上的实验对比:

在这里插入图片描述

其中,MSC表示多尺度输入最大融合,COCO表示采用在MS-COCO上预训练的模型,Aug表示通过随机缩放增加数据。以下是跟其它模型的对比:

在这里插入图片描述

以下是在Cityscapes数据集上的分割效果:
在这里插入图片描述

以下是分割失败的示例:

在这里插入图片描述

这篇关于Python 全栈体系【四阶】(四十三)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/991748

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e