Python图嵌入信息潜在表征算法

2024-05-15 09:28

本文主要是介绍Python图嵌入信息潜在表征算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

📜用例

📜Python社群纽带关系谱和图神经 | 📜C++和Python通信引文道路社评电商大规模行为图结构数据模型 | 📜角色图嵌入学习 | 📜图全局结构信息学习 | 📜图编码解码半监督学习 | 📜富文本表征学习 | 📜法律文本内容语义学习

✒️Python提取图节点嵌入信息

图可以定义为 G = (V, E),其中 V 是一组节点,E 是一组边。 边是两个节点之间的连接,例如节点A和D有一条边。 另外,重要的是要注意图可以是有向图或无向图。 例如,下面的图是无向的,因为 A 与 D 连接,D 与 A 连接。还有一件事,图可以获取不同的节点属性以及边属性,但就我们的目的而言,今天并不重要。

B
A
D
C
E

现在我们或多或少知道了图是什么,我们可以尝试从图中提取节点嵌入。

假设您需要解决如下场景:

  • 我们在社交网络中进行用户交互,我们需要预测两个用户何时连接。节点代表用户,边代表两个用户是“朋友”。 (链接预测任务)
  • 我们有一个研究出版物的引用网络,我们需要预测每个出版物的主题。节点代表出版物,边代表从一份出版物到另一份出版物的引用。 (节点预测任务)
  • 我们有一组蛋白质,可分为酶或非酶。节点代表氨基酸,如果两个节点相距小于 6 埃,则通过边连接它们。 (图分类任务)

对于所有提到的任务,我们需要有节点的表示。因此,如果我们需要运行机器学习算法,我们需要将图结构转换为向量空间。

💦 算法一:

随机游走是一种将图转换为节点序列以训练此模型的方法。 基本上,对于图中的每个节点,模型都会生成连接节点的随机路径。 一旦我们有了这些节点的随机路径,它就会训练此模型来获得节点嵌入。

出于学习目的,请在下面找到该算法的实现,请注意该代码尚未准备好用于大规模应用,可以进行一些并行化和内存改进。

import networkx as nx
import random
import numpy as np
from typing import List
from tqdm import tqdmclass DWk:def __init__(self, window_size: int, embedding_size: int, walk_length: int, walks_per_node: int):self.window_size = window_sizeself.embedding_size = embedding_sizeself.walk_length = walk_lengthself.walk_per_node = walks_per_nodedef random_walk(self, g: nx.Graph, start: str, use_probabilities: bool = False) -> List[str]:walk = [start]for i in range(self.walk_length):neighbours = g.neighbors(walk[i])neighs = list(neighbours)if use_probabilities:probabilities = [g.get_edge_data(walk[i], neig)["weight"] for neig in neighs]sum_probabilities = sum(probabilities)probabilities = list(map(lambda t: t / sum_probabilities, probabilities))p = np.random.choice(neighs, p=probabilities)else:p = random.choice(neighs)walk.append(p)return walkdef get_walks(self, g: nx.Graph, use_probabilities: bool = False) -> List[List[str]]:random_walks = []for _ in range(self.walk_per_node):random_nodes = list(g.nodes)random.shuffle(random_nodes)for node in tqdm(random_nodes):random_walks.append(self.random_walk(g=g, start=node, use_probabilities=use_probabilities))return random_walksdef compute_embeddings(self, walks: List[List[str]]):model = Word2Vec(sentences=walks, window=self.window_size, vector_size=self.embedding_size)return model.wv

💦算法二:

该算法使用深度优先搜索和广度优先搜索算法的组合来提取随机游走。 这种算法组合由两个参数 P(返回参数)和 Q(输入输出参数)控制。

基本上,如果 P 很大,随机游走也会很大,所以它会进行探索,如果 P 很小,我们会停留在本地。 Q 也会发生类似但相反的行为,如果 Q 很小,它将进行探索,如果 Q 很大,它将停留在本地。

我们可以使用 PyTorch 几何测试算法。 该库实现了一系列图神经网络架构和方法来加速 GNN 的工作。 为了测试它,我将使用 Pytorch 几何上提出的教程的一小部分。 为此,他们使用 Cora 数据集。 Cora 数据集包含 2708 份科学出版物,分为七类。 引文网络由 5429 个链接组成。 数据集中的每个出版物都由 0/1 值词向量描述,指示词典中相应词的不存在/存在。该词典由 1433 个独特单词组成。

from torch_geometric.nn import Node2Vec
import os.path as osp
import torch
from torch_geometric.datasets import Planetoid
from tqdm.notebook import tqdmdataset = 'Cora'
path = osp.join('.', 'data', dataset)
dataset = Planetoid(path, dataset)  # dowload or load the Cora dataset
data = dataset[0]
device = 'cuda' if torch.cuda.is_available() else 'cpu'  # check if cuda is available to send the model and tensors to the GPU
model = Node2Vec(data.edge_index, embedding_dim=128, walk_length=20,context_size=10, walks_per_node=10,num_negative_samples=1, p=1, q=1, sparse=True).to(device)def train():model.train() total_loss = 0for pos_rw, neg_rw in tqdm(loader):optimizer.zero_grad() loss = model.loss(pos_rw.to(device), neg_rw.to(device))  loss.backward()optimizer.step() total_loss += loss.item()return total_loss / len(loader)for epoch in range(1, 100):loss = train()print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}')all_vectors = ""
for tensor in model(torch.arange(data.num_nodes, device=device)):s = "\t".join([str(value) for value in tensor.detach().cpu().numpy()])all_vectors += s + "\n"with open("vectors.txt", "w") as f:f.write(all_vectors)with open("labels.txt", "w") as f:f.write("\n".join([str(label) for label in data.y.numpy()]))

模型训练完成后,我们将为图中的每个节点提供一个嵌入,每个嵌入将为 128 维。 训练结束后,我们可以保存嵌入,并在嵌入投影仪中查看表示与标签相比有多“好”。 为此,我使用 T-SNE 算法将 128 维数据减少到 3 维数据,以便我们可以绘制它。

参阅一:计算思维

参阅二:亚图跨际

这篇关于Python图嵌入信息潜在表征算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/991441

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型: