Python图嵌入信息潜在表征算法

2024-05-15 09:28

本文主要是介绍Python图嵌入信息潜在表征算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

📜用例

📜Python社群纽带关系谱和图神经 | 📜C++和Python通信引文道路社评电商大规模行为图结构数据模型 | 📜角色图嵌入学习 | 📜图全局结构信息学习 | 📜图编码解码半监督学习 | 📜富文本表征学习 | 📜法律文本内容语义学习

✒️Python提取图节点嵌入信息

图可以定义为 G = (V, E),其中 V 是一组节点,E 是一组边。 边是两个节点之间的连接,例如节点A和D有一条边。 另外,重要的是要注意图可以是有向图或无向图。 例如,下面的图是无向的,因为 A 与 D 连接,D 与 A 连接。还有一件事,图可以获取不同的节点属性以及边属性,但就我们的目的而言,今天并不重要。

B
A
D
C
E

现在我们或多或少知道了图是什么,我们可以尝试从图中提取节点嵌入。

假设您需要解决如下场景:

  • 我们在社交网络中进行用户交互,我们需要预测两个用户何时连接。节点代表用户,边代表两个用户是“朋友”。 (链接预测任务)
  • 我们有一个研究出版物的引用网络,我们需要预测每个出版物的主题。节点代表出版物,边代表从一份出版物到另一份出版物的引用。 (节点预测任务)
  • 我们有一组蛋白质,可分为酶或非酶。节点代表氨基酸,如果两个节点相距小于 6 埃,则通过边连接它们。 (图分类任务)

对于所有提到的任务,我们需要有节点的表示。因此,如果我们需要运行机器学习算法,我们需要将图结构转换为向量空间。

💦 算法一:

随机游走是一种将图转换为节点序列以训练此模型的方法。 基本上,对于图中的每个节点,模型都会生成连接节点的随机路径。 一旦我们有了这些节点的随机路径,它就会训练此模型来获得节点嵌入。

出于学习目的,请在下面找到该算法的实现,请注意该代码尚未准备好用于大规模应用,可以进行一些并行化和内存改进。

import networkx as nx
import random
import numpy as np
from typing import List
from tqdm import tqdmclass DWk:def __init__(self, window_size: int, embedding_size: int, walk_length: int, walks_per_node: int):self.window_size = window_sizeself.embedding_size = embedding_sizeself.walk_length = walk_lengthself.walk_per_node = walks_per_nodedef random_walk(self, g: nx.Graph, start: str, use_probabilities: bool = False) -> List[str]:walk = [start]for i in range(self.walk_length):neighbours = g.neighbors(walk[i])neighs = list(neighbours)if use_probabilities:probabilities = [g.get_edge_data(walk[i], neig)["weight"] for neig in neighs]sum_probabilities = sum(probabilities)probabilities = list(map(lambda t: t / sum_probabilities, probabilities))p = np.random.choice(neighs, p=probabilities)else:p = random.choice(neighs)walk.append(p)return walkdef get_walks(self, g: nx.Graph, use_probabilities: bool = False) -> List[List[str]]:random_walks = []for _ in range(self.walk_per_node):random_nodes = list(g.nodes)random.shuffle(random_nodes)for node in tqdm(random_nodes):random_walks.append(self.random_walk(g=g, start=node, use_probabilities=use_probabilities))return random_walksdef compute_embeddings(self, walks: List[List[str]]):model = Word2Vec(sentences=walks, window=self.window_size, vector_size=self.embedding_size)return model.wv

💦算法二:

该算法使用深度优先搜索和广度优先搜索算法的组合来提取随机游走。 这种算法组合由两个参数 P(返回参数)和 Q(输入输出参数)控制。

基本上,如果 P 很大,随机游走也会很大,所以它会进行探索,如果 P 很小,我们会停留在本地。 Q 也会发生类似但相反的行为,如果 Q 很小,它将进行探索,如果 Q 很大,它将停留在本地。

我们可以使用 PyTorch 几何测试算法。 该库实现了一系列图神经网络架构和方法来加速 GNN 的工作。 为了测试它,我将使用 Pytorch 几何上提出的教程的一小部分。 为此,他们使用 Cora 数据集。 Cora 数据集包含 2708 份科学出版物,分为七类。 引文网络由 5429 个链接组成。 数据集中的每个出版物都由 0/1 值词向量描述,指示词典中相应词的不存在/存在。该词典由 1433 个独特单词组成。

from torch_geometric.nn import Node2Vec
import os.path as osp
import torch
from torch_geometric.datasets import Planetoid
from tqdm.notebook import tqdmdataset = 'Cora'
path = osp.join('.', 'data', dataset)
dataset = Planetoid(path, dataset)  # dowload or load the Cora dataset
data = dataset[0]
device = 'cuda' if torch.cuda.is_available() else 'cpu'  # check if cuda is available to send the model and tensors to the GPU
model = Node2Vec(data.edge_index, embedding_dim=128, walk_length=20,context_size=10, walks_per_node=10,num_negative_samples=1, p=1, q=1, sparse=True).to(device)def train():model.train() total_loss = 0for pos_rw, neg_rw in tqdm(loader):optimizer.zero_grad() loss = model.loss(pos_rw.to(device), neg_rw.to(device))  loss.backward()optimizer.step() total_loss += loss.item()return total_loss / len(loader)for epoch in range(1, 100):loss = train()print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}')all_vectors = ""
for tensor in model(torch.arange(data.num_nodes, device=device)):s = "\t".join([str(value) for value in tensor.detach().cpu().numpy()])all_vectors += s + "\n"with open("vectors.txt", "w") as f:f.write(all_vectors)with open("labels.txt", "w") as f:f.write("\n".join([str(label) for label in data.y.numpy()]))

模型训练完成后,我们将为图中的每个节点提供一个嵌入,每个嵌入将为 128 维。 训练结束后,我们可以保存嵌入,并在嵌入投影仪中查看表示与标签相比有多“好”。 为此,我使用 T-SNE 算法将 128 维数据减少到 3 维数据,以便我们可以绘制它。

参阅一:计算思维

参阅二:亚图跨际

这篇关于Python图嵌入信息潜在表征算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/991441

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre