憋瞎说,大数据不是你想的那样 No.114

2024-05-15 08:32
文章标签 数据 不是 瞎说 no.114

本文主要是介绍憋瞎说,大数据不是你想的那样 No.114,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

学生党以及很多没设计过大数据开发的小伙伴呢,都对大数据这么一个领域感到非常非常的好奇非常非常的神秘,我今天就非要戳穿给你们看。

1、对,我们做大数据的也写普通的 Java 代码,写普通的 SQL。

比如 Java API版的 Spark 程序,长得跟 Java8 的Stream API 一样一样的。

JavaRDD<String> lines = sc.textFile("data.txt");
JavaRDD<Integer> lineLengths = lines.map(s -> s.length());
int totalLength = lineLengths.reduce((a, b) -> a + b);

再比如,删除一个 Hive 表。

DROP TABLE pokes;

2、对,Hadoop 、Spark 、Hive 的启动和机器运维都跟一个普通的 Java 应用和数据库没什么区别。

比如启动hdfs

bash ./start-dfs.sh

比如启动yarn

bash ./start-yarn.sh

比如启动hive

bash ./hive

完事了,有啥神秘的????不就是配一堆所有系统都有的配置吗?

3、对不起,没有一门叫数据仓库的技术。

数据仓库是一个集结了某个范围内所有经过清洗的统一的数据存储、分析的地点,并没有一门叫数据仓库的技术。

在实战中,我们一般会使用 Hive 来当数据仓库的载体,在没有大数据基础架构的公司也会使用各种传统 DB 来当数据仓库的载体,所以不要再说什么你要学习数据仓库 ok ? 要学 Hive 就说要学 Hive,要学数据治理就说要学数据治理。

4、对,我们大数据就是死写SQL的,但脑回路跟你们不一样

你们写 SQL 优先想功能,我们写SQL优先想这他妈能不能跑出来。

你们写 SQL 可以一直调一直调,我们写 SQL 要想好久才调一次,连机器是什么跑的都要想清楚。

你们写 SQL 压根不管数据分布,我们写 SQL 第一件事就是他妈不会数据倾斜吧?

你们写 SQL 用都能直接写,我们写 SQL 前要写一万个 SQL 做数据清洗。

5、对,10倍,100倍,100万倍 的数据增长我们就需要一直改方案,改改改。

你的 SQL 在10倍量下能跑,在100万倍下,你可能要付出非常久非常久的思考和努力才能基本跑出来,比如一个简单的去重统计。

你的SQL count(1) group by 一下就出来了。

我的如果写得跟你一样我估计这辈子都出不来结果了。

不解释了,大数据计数系列了解一下。

大数据计数原理1+0=1这你都不会算(十)No.77

6、Spark 很快,但 Spark 也很慢

Spark是纯内存计算,但Spark也是批量计算,其中存在的缺陷你们思考一下,对比一下 FLink 这类纯流式计算。

7、即使你有100T数据,你也不是在做大数据。

第一数据存储占用空间大不代表就是大数据,第二即使你数据量级够思维不对你也不是在做大数据。

8、大数据跟机器学习是一家,压根离不开

你可能永远也不会知道 分而治之,统计学,概率论 在这两个学科的统一性和重要性。

9、对不起,你别以为大数据只有 Hadoop,大数据技术栈广和深得你几乎不可想象。

你以为你学完了,完全不可"棱"。

先这样,不知道写啥了,以上。

这篇关于憋瞎说,大数据不是你想的那样 No.114的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/991320

相关文章

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

pandas数据的合并concat()和merge()方式

《pandas数据的合并concat()和merge()方式》Pandas中concat沿轴合并数据框(行或列),merge基于键连接(内/外/左/右),concat用于纵向或横向拼接,merge用于... 目录concat() 轴向连接合并(1) join='outer',axis=0(2)join='o

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口