[转载]分类问题中的“维数灾难”

2024-05-15 07:08

本文主要是介绍[转载]分类问题中的“维数灾难”,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文地址:http://www.cnblogs.com/datahunter/p/3808252.html?utm_source=tuicool&utm_medium=referral

  在看机器学习的论文时,经常会看到有作者提到“curse of dimensionality”,中文译为“维数灾难”,这到底是一个什么样的“灾难”?本文将通过一个例子来介绍这令人讨厌的“curse of dimensionality”以及它在分类问题中的重要性。

  假设现在有一组照片,每一张照片里有一只猫或者一条狗。我们希望设计一个分类器可以自动地将照片中的动物辨别开来。为了实现这个目标,首先需要考虑如何将照片中的动物的特征用数字的形式表达出来。猫与狗的最大区别是什么?有人可能首先想到猫与狗的颜色不一样,有人则可能想到猫与狗的大小不一样。假设从颜色来辨别猫与狗,可以设计三个特征:红色的平均值,绿色的平均值和蓝色的平均值,来决定照片中的动物属于哪一个类:

if 0.5 * red + 0.3 * green + 0.2 * blue > 0.6:return cat
else:return dog

  但是,仅仅通过这三个特征进行分类可能无法得到一个令人满意的结果。因此,可以再增加一些特征:大小,纹理等。也许增加特征之后,分类的结果会有所提高。但是,特征是不是越多越好?


这里写图片描述
图1 过了某一个值后,分类器的性能随着维数的增加不升反降

  从图1可以看到分类器的性能随着特征个数的变化不断增加,过了某一个值后,性能不升反降。这种现象称为“维数灾难”。

  继续之前的例子。假设地球上猫和狗的数量是无限的。由于有限的时间和计算能力,我们仅仅选取了10张照片作为训练样本。我们的目的是基于这10张照片来训练一个线性分类器,使得这个线性分类器可以对剩余的猫或狗的照片进行正确分类。我们从只用一个特征来辨别猫和狗开始:


这里写图片描述
图2

  从图2可以看到,如果仅仅只有一个特征的话,猫和狗几乎是均匀分布在这条线段上,很难将10张照片线性分类。那么,增加一个特征后的情况会怎么样:


这里写图片描述
图3

  增加一个特征后,我们发现仍然无法找到一条直线将猫和狗分开。所以,考虑需要再增加一个特征:


这里写图片描述
图4
这里写图片描述
图5

  此时,我们终于找到了一个平面将猫和狗分开。需要注意的是,只有一个特征时,假设特征空间是长度为5的线段,则样本密度是10/5=2。有两个特征时,特征空间大小是5*5=25,样本密度是10/25=0.4。有三个特征时,特征空间大小是5*5*5=125,样本密度是10/125=0.08。如果继续增加特征数量,样本密度会更加稀疏,也就更容易找到一个超平面将训练样本分开。因为随着特征数量趋向于无限大,样本密度非常稀疏,训练样本被分错的可能性趋向于零。当我们将高维空间的分类结果映射到低维空间时,一个严重的问题出现了:


这里写图片描述
图6

  从图6可以看到将三维特征空间映射到二维特征空间后的结果。尽管在高维特征空间时训练样本线性可分,但是映射到低维空间后,结果正好相反。事实上,增加特征数量使得高维空间线性可分,相当于在低维空间内训练一个复杂的非线性分类器。不过,这个非线性分类器太过“聪明”,仅仅学到了一些特例。如果将其用来辨别那些未曾出现在训练样本中的测试样本时,通常结果不太理想。这其实就是我们在机器学习中学过的过拟合问题。


这里写图片描述
图7

  尽管图7所示的只采用2个特征的线性分类器分错了一些训练样本,准确率似乎没有图4的高,但是,采用2个特征的线性分类器的泛化能力比采用3个特征的线性分类器要强。因为,采用2个特征的线性分类器学习到的不只是特例,而是一个整体趋势,对于那些未曾出现过的样本也可以比较好地辨别开来。换句话说,通过减少特征数量,可以避免出现过拟合问题,从而避免“维数灾难”。


这里写图片描述
图8

  图8从另一个角度诠释了“维数灾难”。假设只有一个特征时,特征的值域是0到1,每一只猫和狗的特征值都是唯一的。如果我们希望训练样本覆盖特征值值域的20%,那么就需要猫和狗总数的20%。我们增加一个特征后,为了继续覆盖特征值值域的20%就需要猫和狗总数的45%(0.45^2=0.2)。继续增加一个特征后,需要猫和狗总数的58%(0.58^3=0.2)。随着特征数量的增加,为了覆盖特征值值域的20%,就需要更多的训练样本。如果没有足够的训练样本,就可能会出现过拟合问题。

  通过上述例子,我们可以看到特征数量越多,训练样本就会越稀疏,分类器的参数估计就会越不准确,更加容易出现过拟合问题。“维数灾难”的另一个影响是训练样本的稀疏性并不是均匀分布的。处于中心位置的训练样本比四周的训练样本更加稀疏。


这里写图片描述
图9

  假设有一个二维特征空间,如图8所示的矩形,在矩形内部有一个内切的圆形。由于越接近圆心的样本越稀疏,因此,相比于圆形内的样本,那些位于矩形四角的样本更加难以分类。那么,随着特征数量的增加,圆形的面积会不会变化呢?这里我们假设超立方体(hypercube)的边长d=1,那么计算半径为0.5的超球面(hypersphere)的体积(volume)的公式为:


这里写图片描述


这里写图片描述
图10

  从图9可以看出随着特征数量的增加,超球面的体积逐渐减小直至趋向于零,然而超立方体的体积却不变。这个结果有点出乎意料,但部分说明了分类问题中的“维数灾难”:在高维特征空间中,大多数的训练样本位于超立方体的角落。


这里写图片描述
图11

  图11显示了不同维度下,样本的分布情况。在8维特征空间中,共有2^8=256个角落,而98%的样本分布在这些角落。随着维度的不断增加,公式2将趋向于0,其中dist_max和dist_min分别表示样本到中心的最大与最小距离。


这里写图片描述

  因此,在高维特征空间中对于样本距离的度量失去意义。由于分类器基本都依赖于如Euclidean距离,Manhattan距离等,所以在特征数量过大时,分类器的性能就会出现下降。

  所以,我们如何避免“维数灾难”?图1显示了分类器的性能随着特征个数的变化不断增加,过了某一个值后,性能不升反降。这里的某一个值到底是多少呢?目前,还没有方法来确定分类问题中的这个阈值是多少,这依赖于训练样本的数量,决策边界的复杂性以及分类器的类型。理论上,如果训练样本的数量无限大,那么就不会存在“维数灾难”,我们可以采用任意多的特征来训练分类器。事实上,训练样本的数量是有限的,所以不应该采用过多的特征。此外,那些需要精确的非线性决策边界的分类器,比如neural network,knn,decision trees等的泛化能力往往并不是很好,更容易发生过拟合问题。因此,在设计这些分类器时应当慎重考虑特征的数量。相反,那些泛化能力较好的分类器,比如naive Bayesian,linear classifier等,可以适当增加特征的数量。

  如果给定了N个特征,我们该如何从中选出M个最优的特征?最简单粗暴的方法是尝试所有特征的组合,从中挑出M个最优的特征。事实上,这是非常花时间的,或者说不可行的。其实,已经有许多特征选择算法(feature selection algorithms)来帮助我们确定特征的数量以及选择特征。此外,还有许多特征抽取方法(feature extraction methods),比如PCA等。交叉验证(cross-validation)也常常被用于检测与避免过拟合问题。

参考资料:
[1] Vincent Spruyt. The Curse of Dimensionality in classification. Computer vision for dummies. 2014. [Link]

这篇关于[转载]分类问题中的“维数灾难”的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/991142

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

k8s容器放开锁内存限制问题

《k8s容器放开锁内存限制问题》nccl-test容器运行mpirun时因NCCL_BUFFSIZE过大导致OOM,需通过修改docker服务配置文件,将LimitMEMLOCK设为infinity并... 目录问题问题确认放开容器max locked memory限制总结参考:https://Access

Java中字符编码问题的解决方法详解

《Java中字符编码问题的解决方法详解》在日常Java开发中,字符编码问题是一个非常常见却又特别容易踩坑的地方,这篇文章就带你一步一步看清楚字符编码的来龙去脉,并结合可运行的代码,看看如何在Java项... 目录前言背景:为什么会出现编码问题常见场景分析控制台输出乱码文件读写乱码数据库存取乱码解决方案统一使