python K-means工具包初解

2024-05-15 05:58
文章标签 python 工具包 means 初解

本文主要是介绍python K-means工具包初解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近数据挖掘实验,写个K-means算法,写完也不是很难,写的过程中想到python肯定有包,虽然师兄说不让用,不过自己也写完了,而用包的话,还不是很熟,稍微查找了下资料,学了下。另外,自己本身写的太烂了,不敢拿出来,后续改进了再写出来吧。

1.注意初始的点,需要转为numpy.array数组格式。

2.若是直接算中心点的话,直接调用kmeans2函数就行,后面的画图,只为了可视化。

#!/usr/bin/pythonimport numpy
import matplotlib
import os
matplotlib.use('Agg')
from scipy.cluster.vq import *
import pylab
pylab.close()xy1=[[2,10],[2,5],[8,4],[5,8],[7,5],[6,4],[1,2],[4,9],[7,3],[1,3]]
xy2=numpy.array(xy1)cluster_num=3
res, idx = kmeans2(numpy.array(zip(xy2[:,0],xy2[:,1])),cluster_num)print "local centre points:\n",rescolors = ([([0.4,1,0.4],[1,0.4,0.4],[0.1,0.8,1])[i] for i in idx])
# plot colored points
pylab.scatter(xy2[:,0],xy2[:,1])# mark centroids as (X)
pylab.scatter(res[:,0],res[:,1], marker='o', s = 500, linewidths=2, c='none')
pylab.scatter(res[:,0],res[:,1], marker='x', s = 500, linewidths=2)#print os.getcwd()
pylab.savefig('pic.png')
效果图:

#---------------------------------------------------------------------------

参考:http://blog.csdn.net/brandohero/article/details/39967663

#!/usr/bin/python# Adapted from http://hackmap.blogspot.com/2007/09/k-means-clustering-in-scipy.htmlimport numpy
import matplotlib
matplotlib.use('Agg')
from scipy.cluster.vq import *
import pylab
pylab.close()# generate 3 sets of normally distributed points around
# different means with different variances
pt1 = numpy.random.normal(1, 0.2, (100,2))
pt2 = numpy.random.normal(2, 0.5, (300,2))
pt3 = numpy.random.normal(3, 0.3, (100,2))# slightly move sets 2 and 3 (for a prettier output)
pt2[:,0] += 1
pt3[:,0] -= 0.5xy = numpy.concatenate((pt1, pt2, pt3))# kmeans for 3 clusters
res, idx = kmeans2(numpy.array(zip(xy[:,0],xy[:,1])),3)colors = ([([0.4,1,0.4],[1,0.4,0.4],[0.1,0.8,1])[i] for i in idx])# plot colored points
pylab.scatter(xy[:,0],xy[:,1], c=colors)# mark centroids as (X)
pylab.scatter(res[:,0],res[:,1], marker='o', s = 500, linewidths=2, c='none')
pylab.scatter(res[:,0],res[:,1], marker='x', s = 500, linewidths=2)pylab.savefig('/tmp/kmeans.png')

#------------------------------------

转载请认证于:http://write.blog.csdn.net/postedit/41158167

这篇关于python K-means工具包初解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/990997

相关文章

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Python获取浏览器Cookies的四种方式小结

《Python获取浏览器Cookies的四种方式小结》在进行Web应用程序测试和开发时,获取浏览器Cookies是一项重要任务,本文我们介绍四种用Python获取浏览器Cookies的方式,具有一定的... 目录什么是 Cookie?1.使用Selenium库获取浏览器Cookies2.使用浏览器开发者工具

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库