Lucene暴走之巧用内存倒排索引高效识别垃圾数据

2024-05-15 03:38

本文主要是介绍Lucene暴走之巧用内存倒排索引高效识别垃圾数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[size=medium]
识别垃圾数据,在一些大数据项目中的ETL清洗时,非常常见,比如通过关键词
(1)过滤垃圾邮件
(2)识别yellow网站
(3)筛选海量简历招聘信息
(4)智能机器人问答测试
........
各个公司的业务规则都不一样,那么识别的算法和算法也不一样,这里提供一种思路,来高效快速的根据关键词规则识别垃圾数据。

下面看下需求:

业务定义一些主关键词若干少则几百个,多则几千个上万个,例如:
[/size]

公司
机车厂
化纤厂
建设局
实业集团
中心店
桑拿中心
托管中心

然后又定义一些辅助关键词若干:

原告
被告
委托代理人
当事人
申请人
上诉人

[size=medium]
ok,关键词有了,下面看下业务规则 , 规定如下:

任意辅助关键词组合主关键词都命中的情况下,并且词组间距不大于20者,即为合法数据。

嗯,没听懂?,那么来看个例子,一段文本如下:
[/size]

上诉人北京金建出租汽车有限公司因机动车x通事故责任纠纷一案

[size=medium]
使用IK细粒度分词后可能是这样的:
[/size]

上诉人|上诉|人|北京|金|建出|出租汽车|出租|汽车|有限公司|有限|有|限|公司|因|机动车|机动|车|x通事故|x通|通事|事故责任|事故|责任|纠纷|一案|

[size=medium]
根据规则,辅助词库与主词库都命中,而且中间的词组间距不超过20的,为合法数据,
本例子中:
辅助关键词:上诉人
主关键词: 公司
都出现,中间词组是12个,所以符合业务规则,即为合法数据,

假设,改变原来的文本的公司为集团,再次测试:
[/size]

上诉人北京金建出租汽车有限集团因机动车x通事故责任纠纷一案

使用IK细粒度分词后可能是这样的:

上诉人|上诉|人|北京|金|建出|出租汽车|出租|汽车|有限集团|有限|有|限|集团|因|机动车|机动|车|x通事故|x通|通事|事故责任|事故|责任|纠纷|一案|

[size=medium]
这次因为辅助关键词库命中了,但是主关键词库没有命中,所以会被当成垃圾数据。

上面是帮助理解业务的一个例子,下面再分析下,性能问题,假设主关键词有500个,辅助关键词有10个,那么任意
两两组合的可能就是500*10=5000个规则条件,也就是意味着需要最坏情况下,需要匹配5000次才能识别一篇垃圾数据,当然如果你参与识别垃圾的文本不是一个字段,而是二个字段,一个是标题,一个是内容,那么最后真正的匹配次数是5000*2=10000词匹配,如果再加上距离条件,那么查询的复杂度将会大幅度增加,这个时候,如果我们使用正则匹配
效率可想而知,使用正则每次全文扫描定位,耗时非常之慢,这时候我们假设有一种快捷的hash算法,来提升性能,毫无疑问,类似的倒排索引将会是解决这种问题的神器。

因为只需要构建一次临时索引,不落地磁盘,不与IO打交道,仅仅在内存和cpu之间参与计算匹配,而且规则方式非常灵活,可以有更多的规则制定进来,特别是关键词匹配这块,lucene索引非常完美的解决了这个问题。当然如此这种计算,非常耗CPU,对内存的占用不是非常高,因为一条数据,处理完之后,他占用的资源,会被释放。

在线情况下:平均几十毫秒左右就能识别一条数据,已经接近实时了

离线情况下:在集成到hadoop或者Spark这种分布式的集群里面,也是非常给力的,因为通常情况下spark和hadoop比较耗IO和磁盘而加入这种运算将会大大提升集群的资源使用效率。

本项目只是给出了一个根据关键词识别的例子,这个项目拿到你们本地也许并不能立刻使用,但是相似的业务,但是它提供了一种思路,大部分情况下,改动少许代码,即可适应大部分类似的业务。
核心代码如下:
[/size]


package com.anytrust.algo;

import com.anytrust.model.MonitorType;
import com.anytrust.tools.DictTools;
import org.apache.lucene.index.memory.MemoryIndex;
import org.apache.lucene.queryparser.classic.QueryParser;
import org.apache.lucene.search.BooleanQuery;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.wltea.analyzer.lucene.IKAnalyzer;

/**
* Created by qindongliang on 2016/1/7.
* 根据规则识别是否为垃圾数据
*/
public class CheckOneAlgo {

//IK中文分词器
IKAnalyzer analyzer=new IKAnalyzer(false);
//内存索引处理
MemoryIndex index = new MemoryIndex();

static {
//设置Lucene的boolean query条件数最大支持个数
BooleanQuery.setMaxClauseCount(10000);
}


static Logger logger= LoggerFactory.getLogger(CheckOneAlgo.class);


/**构建查询query
* @param type 根据类型构建
* */
private String buildQuery(MonitorType type){

StringBuffer sb =new StringBuffer("(");
for(String kw: DictTools.main_kws){//遍历主词库
switch (type) {
case LITIGATION://代表文书 0105
for (String hkw : DictTools.assist_kws) { //遍历辅助词库
sb.append("tc:\"").append(hkw + kw).append("\"~20 ");
}
break;
case ANNOUNCEMENT://公告 0104
sb.append("tc:\"").append(kw).append("\" ");
break;
default:
logger.error("未知类型:{}",type);
break;

}
}
sb.append(" ) ");
return sb.toString();
}


/***
* 对一段文本执行垃圾数据识别功能
* 返回true说明是有效数据
* 返回false说明是垃圾数据
* @param text 监测的文本
* @return
*/
public boolean checkDoc(String text,MonitorType type){
String query=buildQuery(type);
QueryParser parser = new QueryParser("", analyzer);
index.addField("tc", text, analyzer);
try {
float score = index.search(parser.parse(query));
if(score > 0.0f){
return true;//正确数据
}else{
return false;//垃圾数据
}

}catch (Exception e){
logger.error("识别垃圾数据异常!",e);
}finally {
index.reset();//重置index引擎,服复用类对象
}
return false;
}


}


[size=medium]有些关键词在Iteye博客会屏蔽,建议直接到github看:
Github地址:[url]https://github.com/qindongliang/lucene-garbage-check[/url]
[/size]
[b][color=green][size=large]
有什么问题 可以扫码关注微信公众号:我是攻城师(woshigcs),在后台留言咨询。
本公众号的内容是有关搜索和大数据技术和互联网等方面内容的分享,也是一个温馨的技术互动交流的小家园
[/size][/color][/b]
[img]http://dl2.iteye.com/upload/attachment/0104/9948/3214000f-5633-3c17-a3d7-83ebda9aebff.jpg[/img]

这篇关于Lucene暴走之巧用内存倒排索引高效识别垃圾数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/990702

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

Java中的StringBuilder之如何高效构建字符串

《Java中的StringBuilder之如何高效构建字符串》本文将深入浅出地介绍StringBuilder的使用方法、性能优势以及相关字符串处理技术,结合代码示例帮助读者更好地理解和应用,希望对大家... 目录关键点什么是 StringBuilder?为什么需要 StringBuilder?如何使用 St

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转