如何管理Spark Streaming消费Kafka的偏移量(一)

2024-05-15 03:08

本文主要是介绍如何管理Spark Streaming消费Kafka的偏移量(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近工作有点忙,所以更新文章频率低了点,在这里给大家说声抱歉,前面已经写过在spark streaming中管理offset,但当时只知道怎么用,并不是很了解为何要那样用,最近一段时间又抽空看了一个github开源程序自己管理offset的源码,基本已经理解透彻了,当然这里面还包含了由于理解不透彻导致升级失败的一个案例,这个在下篇文章会分享出来。本篇我们先从理论的角度聊聊在Spark Streaming集成Kafka时的offset状态如何管理。

spark streaming 版本 2.1

kafka 版本0.9.0.0

在这之前,先重述下spark streaming里面管理偏移量的策略,默认的spark streaming它自带管理的offset的方式是通过checkpoint来记录每个批次的状态持久化到HDFS中,如果机器发生故障,或者程序故障停止,下次启动时候,仍然可以从checkpoint的目录中读取故障时候rdd的状态,便能接着上次处理的数据继续处理,但checkpoint方式最大的弊端是如果代码升级,新版本的jar不能复用旧版本的序列化状态,导致两个版本不能平滑过渡,结果就是要么丢数据,要么数据重复,所以官网搞的这个东西,几乎没有人敢在生产环境运行非常重要的流式项目。

所以比较通用的解决办法就是自己写代码管理spark streaming集成kafka时的offset,自己写代码管理offset,其实就是把每批次offset存储到一个外部的存储系统里面包括(Hbase,HDFS,Zookeeper,Kafka,DB等等),不用的什么存储系统, 都需要考虑到三种时刻的offset的状态,否则offset的状态不完整,就可能导致一些bug出现。

场景一:

当一个新的spark streaming+kafka的流式项目第一次启动的时候,这个时候发现外部的存储系统并没有记录任何有关这个topic所有分区的偏移量,所以就从 KafkaUtils.createDirectStream直接创建InputStream流,默认是从最新的偏移量消费,如果是第一次其实最新和最旧的偏移量时相等的都是0,然后在以后的每个批次中都会把最新的offset给存储到外部存储系统中,不断的做更新。

场景二:

当流式项目停止后再次启动,会首先从外部存储系统读取是否记录的有偏移量,如果有的话,就读取这个偏移量,然后把偏移量集合传入到KafkaUtils.createDirectStream中进行构建InputSteam,这样的话就可以接着上次停止后的偏移量继续处理,然后每个批次中仍然的不断更新外部存储系统的偏移量,这样以来就能够无缝衔接了,无论是故障停止还是升级应用,都是透明的处理。

场景三:

对正在运行的一个spark streaming+kafka的流式项目,我们在程序运行期间增加了kafka的分区个数,请注意:这个时候新增的分区是不能被正在运行的流式项目感应到的,如果想要程序能够识别新增的分区,那么spark streaming应用程序必须得重启,同时如果你还使用的是自己写代码管理的offset就千万要注意,对已经存储的分区偏移量,也要把新增的分区插入进去,否则你运行的程序仍然读取的是原来的分区偏移量,这样就会丢失一部分数据。

总结:

如果自己管理kafka的偏移量,一定要注意上面的三个场景,如果考虑不全,就有可能出现诡异的问题。



有什么问题可以扫码关注微信公众号:我是攻城师(woshigcs),在后台留言咨询。 技术债不能欠,健康债更不能欠, 求道之路,与君同行。

输入图片说明



这篇关于如何管理Spark Streaming消费Kafka的偏移量(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/990634

相关文章

gradle第三方Jar包依赖统一管理方式

《gradle第三方Jar包依赖统一管理方式》:本文主要介绍gradle第三方Jar包依赖统一管理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景实现1.顶层模块build.gradle添加依赖管理插件2.顶层模块build.gradle添加所有管理依赖包

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

HTML5中的Microdata与历史记录管理详解

《HTML5中的Microdata与历史记录管理详解》Microdata作为HTML5新增的一个特性,它允许开发者在HTML文档中添加更多的语义信息,以便于搜索引擎和浏览器更好地理解页面内容,本文将探... 目录html5中的Mijscrodata与历史记录管理背景简介html5中的Microdata使用M

Spring 基于XML配置 bean管理 Bean-IOC的方法

《Spring基于XML配置bean管理Bean-IOC的方法》:本文主要介绍Spring基于XML配置bean管理Bean-IOC的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录一. spring学习的核心内容二. 基于 XML 配置 bean1. 通过类型来获取 bean2. 通过

python uv包管理小结

《pythonuv包管理小结》uv是一个高性能的Python包管理工具,它不仅能够高效地处理包管理和依赖解析,还提供了对Python版本管理的支持,本文主要介绍了pythonuv包管理小结,具有一... 目录安装 uv使用 uv 管理 python 版本安装指定版本的 Python查看已安装的 Python

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in

nvm如何切换与管理node版本

《nvm如何切换与管理node版本》:本文主要介绍nvm如何切换与管理node版本问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录nvm切换与管理node版本nvm安装nvm常用命令总结nvm切换与管理node版本nvm适用于多项目同时开发,然后项目适配no

一文详解kafka开启kerberos认证的完整步骤

《一文详解kafka开启kerberos认证的完整步骤》这篇文章主要为大家详细介绍了kafka开启kerberos认证的完整步骤,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、kerberos安装部署二、准备机器三、Kerberos Server 安装1、配置krb5.con

Redis实现RBAC权限管理

《Redis实现RBAC权限管理》本文主要介绍了Redis实现RBAC权限管理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1. 什么是 RBAC?2. 为什么使用 Redis 实现 RBAC?3. 设计 RBAC 数据结构