时间复杂度的表示、分析、计算方法……一文带你看懂时间复杂度!

2024-05-14 21:18

本文主要是介绍时间复杂度的表示、分析、计算方法……一文带你看懂时间复杂度!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如果你还在发愁究竟怎么计算时间复杂度和空间复杂度,那你是来对地方了!

名词解释:

在计算机科学中,时间复杂性,又称时间复杂度,算法的时间复杂度是一个函数,它定性描述该算法的运行时间。这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,亦即考察输入值大小趋近无穷时的情况。

时间复杂度的表示方法

其实就是算法(代码)的执行效率,算法代码的执行时间。我们来看下面一个简单的代码:

int sumFunc(int n) {  int num = 0;     // 执行一次  for (int i = 1; i <= n; ++i) {  // 执行n次    num = num + i;         // 执行n次  }        return num;}

假设,每行代码的执行时间为t,那么这块代码的时间就是(2n+2)*t

由此得出:代码执行时间T(n)与代码的执行次数是成正比的!

那么我们来看下一个例子:

int sumFunc(int n) {  int num = 0;    // 执行一次  for (int i = 1; i <= n; ++i) {       // 执行n次    for (int j = 1; j <= n; ++j) {     //执行n*n次      num = num + i * j;         // 执行n*n次    }  }}

同理,该代码执行时间为(2n*n+n+1)*t,没意见吧?继续往后看!

注意:在数据结构/算法中,通常使用T(n)表示代码执行时间,n表示数据规模大小,f(n)表示代码执行次数综合,所以上面这个例子可以表示为f(n)=(2n*n+n+1)*t,其实就是一个求总和的式子,O(大写O)表示代码执行时间与 f(n) 成正比例。

根据上面两个例子得出结论:代码的执行时间 T(n)与每行代码的执行次数 n 成正比,人们把这个规律总结成这么一个公式: T(n) = O(f(n))

所以呢,第一个例子中的 T(n)=O(2n+1),第二个例子中的 T(n)=O(2n*n+n+1),这就是时间复杂度表示法,也叫大O时间复杂度表示法。

但是,大O时间复杂度并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度,简称时间复杂度

与泰勒公式相反的是,算了,扯哪去了…

当n变得越来越大时,公式中的低阶,常量,系数三部分影响不了其增长趋势,所以可以直接忽略他们,只记录一个最大的量级就可以了,所以上述两个例子实际他们的时间复杂度应该记为:T(n)=O(n) ,T(n)=O(n*n)

我想你应该明白大致是怎么回事了,那么我们来看看如何去计算它?

时间复杂度的分析与计算方法

(1)循环次数最多原则

我们上面说过了,当n变得越来越大时,公式中的低阶,常量,系数三部分影响不了其增长趋势,可以直接忽略他们,只记录一个最大的量级就可以了。因此我们在计算时间复杂度时,只需关注循环次数最多的那段代码即可。

int sumFunc(int n) {int sum = 0;     //执行1次,忽略不计for (int i = 0; i < n; i++) {sum += i;    // 循环内执行次数最多,执行次数为n次,因此时间复杂度记为O(n)}  return sum;    //执行1次,忽略不计
}
 

 

(2)加法原则

int sumFunc(int n) {int sum = 0;     //常量级,忽略for (int i = 0; i < 99; i++) {sum += i;  //执行100次,还是常量级,忽略}for (int i = 0; i < n; i++) {sum += i;  //执行n次}for (int i = 0; i < n; i++){for (int j = 0; j < n; j++) {sum += i;  //执行n*n次}}return sum;
}

上述例子中,最大的两块代码时间复杂度分别为 O(n)和O(n*n),其结果本应该是:T(n)=O(n)+O(n*n),我们取其中最大的量级,因此整段代码的复杂度为:O(n * n)

所以得出结论:量级最大的那段代码时间复杂度=总的时间复杂度

(3)乘法原则

嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

void Func1(int n) {for (int i = 0; i < n; i++) {Func2(n);  //执行n次,每次都会调用Func2函数执行n次}
}
void Func2(int n) {int sum = 0;for (int i = 0; i < n; i++){sum += 1;  //执行n次}
}

因此这段代码时间复杂度为O(n) * O(n) = O(n*n) = O(n*n)

同理,如果将其中一个n换成m,那么它的时间复杂度就是O(n*m)

常见的几种时间复杂度

 

(1)O(1)常量级时间复杂度

void Func(void) {for (int i = 0; i < 100; i++) {printf("hello");  //执行一百次,也是常量级,记为O(1)}
}
void Func(void) {printf("hello");printf("hello");  printf("hello");//各执行一次,还是记为O(1)
}

相信你也看明白了,O(1)不是说代码只有一行,这个1它代表的是一个常量,即使它有以前一万行这样的也是O(1),因为它是固定的不会变化(也就是常量),所以凡是常量级复杂度代码,均记为O(1)

(2)常见的O(n)复杂度

void Func(int n) {for (int i = 0; i < n; i++) {printf("hello");}
}

不用多说了吧!继续!

(3)O(logn),O(nlogn) ,这就有点难度了!

首先我们来回忆以下换底公式:

记住公式啊,来看例子:

void Func(int n) {for (int i = 1; i < n; i++) {i = i * 2;}
}
可以看出,i = i * 2这行代码执行次数是最多的,那么到底执行了多少次呢?

第一次 i=2,执行第二次 i=4,执行第三次 i=8…

假设它执行了x次,那么x的取值为:

当上述代码的2改成3的时候,x的取值也就是:

当然不管log的底数是几,是e也好,是10也罢,统统记为:

这是为啥子念?由换底公式可以计算出:

换底之后,可以看出log3(2)其实就是一个常数,忽略它!而在这场游戏中,log默认就是以2为底的,所以统统记为O(logn)。

void Func(int n) {for (int i = 0; i < n; i++) {Func2(n);    //执行n次,嵌套调用,每次调用执行logn次}
}
void Func2(int n) {for (int i = 0; i < n; i++){i = i * 2;    //执行logn次}
}
所以这个O(nlogn)也很好理解了吧!

其他就不赘述了,相信聪明的你一定可以举一反三!如果对你有帮助,就点个“在看”支持下作者吧!

这篇关于时间复杂度的表示、分析、计算方法……一文带你看懂时间复杂度!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/989874

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

java时区时间转为UTC的代码示例和详细解释

《java时区时间转为UTC的代码示例和详细解释》作为一名经验丰富的开发者,我经常被问到如何将Java中的时间转换为UTC时间,:本文主要介绍java时区时间转为UTC的代码示例和详细解释,文中通... 目录前言步骤一:导入必要的Java包步骤二:获取指定时区的时间步骤三:将指定时区的时间转换为UTC时间步

一文详解MySQL索引(六张图彻底搞懂)

《一文详解MySQL索引(六张图彻底搞懂)》MySQL索引的建立对于MySQL的高效运行是很重要的,索引可以大大提高MySQL的检索速度,:本文主要介绍MySQL索引的相关资料,文中通过代码介绍的... 目录一、什么是索引?为什么需要索引?二、索引该用哪种数据结构?1. 哈希表2. 跳表3. 二叉排序树4.