卷积网络项目:实现识别鲜花四分类对比LeNet5、VGG16、ResNet18、ResNet34分类网络

本文主要是介绍卷积网络项目:实现识别鲜花四分类对比LeNet5、VGG16、ResNet18、ResNet34分类网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

卷积四分类项目

Gitee传送门

分类目标选取

鲜花

  • 杏花 apricot_blossom
  • 桃花 peach_blossom
  • 梨花 pear_blossom
  • 梅花 plum_blossom

模型选择

卷积

  • LeNet5
  • VGG16
  • ResNet18
  • ResNet34

以图搜图

获取相似度前10的搜图结果

数据清洗

鲜花四分类

删除非图片文件

image.png

删除重复图片

image.png
image.png
image.png
image.png
image.png

整理数据集

鲜花四分类

每种类别数据:训练500、测试50、预测10
总训练集:2500
总测试集:250
总预测集:40

训练模型

报错

ValueError: num_samples should be a positive integer value, but got num_samples=0

换了电脑后,数据集的存储位置不同,更换路径后解决

RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same

原因:错误内容就在类型不匹配,根据报错内容可以看出Input type为torch.FloatTensor(CPU数据类型),而weight type(即网络权重参数这些)为torch.cuda.FloatTensor(GPU数据类型)
方案:将输入类型转变为GPU类型
输入数据和网络都切换到cuda,但问题仍存在
检查网络,修改模型隐藏层初始化方式后,解决了问题

鲜花

v1:LeNet5:bn

输出4分类

image.png
image.png
image.png

v2:VGG16:bn

数据太差,提前中断了训练
image.png
image.png
image.png

v3:ResNet18:bn

输出4分类
f4_v3:32x32

image.png
image.png
image.png
准确率仍上不去,预估增大迭代次数,准确率能慢慢提升

f4_v3.3:224x224

image.png
image.png
过拟合前最佳:
image.png
测试数据出现过拟合现象,考虑减小数据大小

f4_v3.4:112x112

image.png
image.png
过拟合前最佳:
image.png
再次出现过拟合,提前中断了训练

f4_v3.5:56x56

image.png
image.png
过拟合前最佳:
image.png
再次出现过拟合,提前中断了训练
结论:图片缩放大小无法解决过拟合问题

f4_v3.6:32x32,减4个残差块

image.png
image.png
测试集过拟合前
image.png
最佳
image.png

f4_v3.6:32x32,减4个残差块,transforms减Norm

image.png
image.png
测试集过拟合前
image.png
最佳
image.png

v4:ResNet34:bn

输出4分类

image.png
image.png
image.png
预估:增加迭代次数,可能能缓慢提升准确率

以图搜图

报错

ValueError: Expected more than 1 value per channel when training, got input size torch.Size([1, 512, 1, 1])

image.png
LeNet5模型能正常运行,ResNet18和ResNet34模型报错
image.png正常运行
image.png报错
image.png报错
原因:模型中含有nn.BatchNorm层,训练时需要batch_size大于1,来计算当前batch的running mean and std。自定义数据数量除以batch_size后刚好余1,就发生了上述报错
方案1:在pytorch的Dataloader中设置drop_last=True即可,这样会忽略最后一个batch
尝试在数据集增加drop_last=True,再次训练,尚未解决这个问题
方案2:在添加数据前增加model.eval()
代码原本就有这个语句,仍存在这个问题
方案3:修改训练模型数据预处理中Resize大小32–>224,问题解决

搜图结果

v1:LeNet5:bn

image.png
image.png
没有一个是正确分类

v3:ResNet18:bn

f4_v3:32x32

image.png
image.png
没有一个是正确分类,且相似度差距很大

f4_v3.3:224x224

过拟合前最佳:
image.png
image.png
预测最佳类别中top10图片和原图类别相同,但与top1图片与原图相似度不是0
原因:检索库图片根据特征处理、带参数的模型生成对应的特征文件,更换特征处理方式或参数后,生成的特征文件有所不同,所以计算相似度,哪怕是原图也不为0
解决方案:更换特征处理方式或参数后,重新初始化特征文件,再进行预测,解决了这个问题

v4:ResNet34:bn

f4_v4:32x32

image.png
image.png
没有一个是正确分类,且相似度差距很大

f4_v4.3:224x224

image.png
image.png
出现了一个正确分类,由于时间问题,v4.3版没有完成足够的训练,不确定迭代后的数据能否达到预期效果

特征处理

feat_v3.3.0:tensor

image.png

feat_v3.3.1:tensor+Resize56

image.png

feat_v3.3.2:tensor+Resize56+Norm

image.png

feat_v3.3.3:tensor+crop+Resize56

image.png

feat_v3.3.4:tensor+Resize+crop+Resize56

image.png

feat_v3.3.5:tensor+Resize+crop+Resize224

image.png

feat_v3.3.6:tensor+Resize+crop+Resize112

image.png

feat_v3.3.7:tensor+Resize+crop+Resize32

image.png

总结

feat_v3.3.4.txt版本的特征处理效果最好
特征处理方式:tensor+Resize600+crop400+Resize56

搜图效果

相似度前10的结果,top1是原图,6张正确类别花,3张错误类别花
原因:这四类花本身比较相似,不便于学习;也可能是数据量不够多,训练效果不够好;也可能迭代的次数不够多,模型没有训练到足够好的效果
20240227002214_rec_.gif

这篇关于卷积网络项目:实现识别鲜花四分类对比LeNet5、VGG16、ResNet18、ResNet34分类网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/989810

相关文章

python如何下载网络文件到本地指定文件夹

《python如何下载网络文件到本地指定文件夹》这篇文章主要为大家详细介绍了python如何实现下载网络文件到本地指定文件夹,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下...  在python中下载文件到本地指定文件夹可以通过以下步骤实现,使用requests库处理HTTP请求,并结合o

Java实现视频格式转换的完整指南

《Java实现视频格式转换的完整指南》在Java中实现视频格式的转换,通常需要借助第三方工具或库,因为视频的编解码操作复杂且性能需求较高,以下是实现视频格式转换的常用方法和步骤,需要的朋友可以参考下... 目录核心思路方法一:通过调用 FFmpeg 命令步骤示例代码说明优点方法二:使用 Jaffree(FF

基于C#实现MQTT通信实战

《基于C#实现MQTT通信实战》MQTT消息队列遥测传输,在物联网领域应用的很广泛,它是基于Publish/Subscribe模式,具有简单易用,支持QoS,传输效率高的特点,下面我们就来看看C#实现... 目录1、连接主机2、订阅消息3、发布消息MQTT(Message Queueing Telemetr

Java实现图片淡入淡出效果

《Java实现图片淡入淡出效果》在现代图形用户界面和游戏开发中,**图片淡入淡出(FadeIn/Out)**是一种常见且实用的视觉过渡效果,它可以用于启动画面、场景切换、轮播图、提示框弹出等场景,通过... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细

Python实现获取带合并单元格的表格数据

《Python实现获取带合并单元格的表格数据》由于在日常运维中经常出现一些合并单元格的表格,如果要获取数据比较麻烦,所以本文我们就来聊聊如何使用Python实现获取带合并单元格的表格数据吧... 由于在日常运维中经常出现一些合并单元格的表格,如果要获取数据比较麻烦,现将将封装成类,并通过调用list_exc

使用animation.css库快速实现CSS3旋转动画效果

《使用animation.css库快速实现CSS3旋转动画效果》随着Web技术的不断发展,动画效果已经成为了网页设计中不可或缺的一部分,本文将深入探讨animation.css的工作原理,如何使用以及... 目录1. css3动画技术简介2. animation.css库介绍2.1 animation.cs

Spring Boot项目打包和运行的操作方法

《SpringBoot项目打包和运行的操作方法》SpringBoot应用内嵌了Web服务器,所以基于SpringBoot开发的web应用也可以独立运行,无须部署到其他Web服务器中,下面以打包dem... 目录一、打包为JAR包并运行1.打包为可执行的 JAR 包2.运行 JAR 包二、打包为WAR包并运行

Java进行日期解析与格式化的实现代码

《Java进行日期解析与格式化的实现代码》使用Java搭配ApacheCommonsLang3和Natty库,可以实现灵活高效的日期解析与格式化,本文将通过相关示例为大家讲讲具体的实践操作,需要的可以... 目录一、背景二、依赖介绍1. Apache Commons Lang32. Natty三、核心实现代

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细