开源模型应用落地-CodeQwen模型小试-集成langchain(四)

2024-05-14 11:52

本文主要是介绍开源模型应用落地-CodeQwen模型小试-集成langchain(四),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前言

    通过学习代码专家模型,开发人员可以获得高效、准确和个性化的代码支持。这不仅可以提高工作效率,还可以在不同的技术环境中简化软件开发工作流程。代码专家模型的引入将为开发人员带来更多的机会去关注创造性的编程任务,从而推动软件开发的创新和进步。

    通过使用langchain,用户可以直接提出问题或发送指令,而无需担心具体的步骤或流程。langchain会自动将任务分解为多个子任务,并将它们传递给适合的语言模型进行处理。


二、术语

2.1.CodeQwen1.5

    基于 Qwen 语言模型初始化,拥有 7B 参数的模型,其拥有 GQA 架构,经过了 ~3T tokens 代码相关的数据进行预训练,共计支持 92 种编程语言、且最长支持 64K 的上下文输入。效果方面,CodeQwen1.5 展现出了非凡的代码生成、长序列建模、代码修改、SQL 能力等,该模型可以大大提高开发人员的工作效率,并在不同的技术环境中简化软件开发工作流程。

CodeQwen 是基础的 Coder

    代码生成是大语言模型的关键能力之一,期待模型将自然语言指令转换为具有精确的、可执行的代码。仅拥有 70 亿参数的 CodeQwen1.5 在基础代码生成能力上已经超过了更尺寸的模型,进一步缩小了开源 CodeLLM 和 GPT-4 之间编码能力的差距。

CodeQwen 是长序列 Coder

    长序列能力对于代码模型来说至关重要,是理解仓库级别代码、成为 Code Agent 的核心能力。而当前的代码模型对于长度的支持仍然非常有限,阻碍了其实际应用的潜力。CodeQwen1.5 希望进一步推进开源代码模型在长序列建模上的进展,我们收集并构造了仓库级别的长序列代码数据进行预训练,通过精细的数据配比和组织方式,使其最终可以最长支持 64K 的输入长度。

CodeQwen 是优秀的代码修改者

    一个好的代码助手不仅可以根据指令生成代码,还能够针对已有代码或者新的需求进行修改或错误修复。

CodeQwen 是出色的 SQL 专家

    CodeQwen1.5 可以作为一个智能的 SQL 专家,弥合了非编程专业人士与高效数据交互之间的差距。它通过自然语言使无编程专业知识的用户能够查询数据库,从而缓解了与SQL相关的陡峭学习曲线。

2.2.CodeQwen1.5-7B-Chat

CodeQwen1.5 is the Code-Specific version of Qwen1.5. It is a transformer-based decoder-only language model pretrained on a large amount of data of codes.

  • Strong code generation capabilities and competitve performance across a series of benchmarks;
  • Supporting long context understanding and generation with the context length of 64K tokens;
  • Supporting 92 coding languages
  • Excellent performance in text-to-SQL, bug fix, etc.

2.3.LangChain

    是一个全方位的、基于大语言模型这种预测能力的应用开发工具。LangChain的预构建链功能,就像乐高积木一样,无论你是新手还是经验丰富的开发者,都可以选择适合自己的部分快速构建项目。对于希望进行更深入工作的开发者,LangChain 提供的模块化组件则允许你根据自己的需求定制和创建应用中的功能链条。

    LangChain本质上就是对各种大模型提供的API的套壳,是为了方便我们使用这些 API,搭建起来的一些框架、模块和接口。

   LangChain的主要特性:
        1.可以连接多种数据源,比如网页链接、本地PDF文件、向量数据库等
        2.允许语言模型与其环境交互
        3.封装了Model I/O(输入/输出)、Retrieval(检索器)、Memory(记忆)、Agents(决策和调度)等核心组件
        4.可以使用链的方式组装这些组件,以便最好地完成特定用例。
        5.围绕以上设计原则,LangChain解决了现在开发人工智能应用的一些切实痛点。


三、前置条件

3.1.基础环境

操作系统:centos7

Tesla V100-SXM2-32GB  CUDA Version: 12.2

3.2.下载模型

huggingface:

https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat/tree/main

ModelScope:

git clone https://www.modelscope.cn/qwen/CodeQwen1.5-7B-Chat.git

PS:

1. 根据实际情况选择不同规格的模型

3.3.安装虚拟环境

conda create --name langchain python=3.10
conda activate langchain
# -c 参数用于指定要使用的通道
conda install pytorch pytorch-cuda=11.8 -c pytorch -c nvidia
pip install langchain accelerate numpy transformers==4.38.1

ps: 注意在虚拟环境中安装


四、使用方式

4.1.生成代码能力

# -*-  coding = utf-8 -*-
import warningsfrom langchain import LLMChain
from langchain.llms import HuggingFacePipeline
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplatewarnings.filterwarnings("ignore")model_path = "/model/CodeQwen1.5-7B-Chat"local_llm = HuggingFacePipeline.from_model_id(model_id=model_path,task="text-generation",device=0,pipeline_kwargs={"max_new_tokens": 8192},
)system_template = "You are a helpful assistant."
system_message_prompt = SystemMessagePromptTemplate.from_template(system_template)human_template = """Question: {question}
Answer: Let's think step by step."""
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)prompt_template = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
prompt = prompt_template.format_prompt(question="用Python写一个冒泡排序算法的例子").to_messages()
print(prompt)llm_chain = LLMChain(prompt=prompt_template, llm=local_llm)
print(llm_chain.run(question="用Python写一个冒泡排序算法的例子"))

调用结果:

在IDEA中运行模型生成的代码

结论:

模型能根据需求生成可运行代码

4.2.修改代码的能力

示例说明:

把冒泡排序正确的代码故意修改为错误,异常为:UnboundLocalError: local variable 'j' referenced before assignment

# -*-  coding = utf-8 -*-
import warningsfrom langchain import LLMChain
from langchain.llms import HuggingFacePipeline
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplatewarnings.filterwarnings("ignore")model_path = "/model/CodeQwen1.5-7B-Chat"local_llm = HuggingFacePipeline.from_model_id(model_id=model_path,task="text-generation",device=0,pipeline_kwargs={"max_new_tokens": 8192},
)system_template = "You are a helpful assistant."
system_message_prompt = SystemMessagePromptTemplate.from_template(system_template)human_template = '我用Python写了一个冒泡排序的算法例子,但是运行结果不符合预期,请修改,具体代码如下: {code}'human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)code = '''
def bubble_sort(numbers):n = len(numbers)for i in range(n-1):for j in range(0, n-j-1):if numbers[j] > numbers[j+1]:numbers[j], numbers[j+1] = numbers[j+1], numbers[j]return numbersif __name__ == "__main__":unsorted_list = [64, 34, 25, 12, 22, 11, 90]sorted_list = bubble_sort(unsorted_list)print("Sorted List:", sorted_list)         
'''prompt_template = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
llm_chain = LLMChain(prompt=prompt_template, llm=local_llm)
print(llm_chain.run(code=code))

调用结果:

结论:

模型能发现问题,并把异常修正

这篇关于开源模型应用落地-CodeQwen模型小试-集成langchain(四)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/988683

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

如何在Spring Boot项目中集成MQTT协议

《如何在SpringBoot项目中集成MQTT协议》本文介绍在SpringBoot中集成MQTT的步骤,包括安装Broker、添加EclipsePaho依赖、配置连接参数、实现消息发布订阅、测试接口... 目录1. 准备工作2. 引入依赖3. 配置MQTT连接4. 创建MQTT配置类5. 实现消息发布与订阅

SpringBoot集成LiteFlow工作流引擎的完整指南

《SpringBoot集成LiteFlow工作流引擎的完整指南》LiteFlow作为一款国产轻量级规则引擎/流程引擎,以其零学习成本、高可扩展性和极致性能成为微服务架构下的理想选择,本文将详细讲解Sp... 目录一、LiteFlow核心优势二、SpringBoot集成实战三、高级特性应用1. 异步并行执行2

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”