图像算法的基础知识(双线性插值,协方差矩阵,矩阵的特征值、特征向量)

本文主要是介绍图像算法的基础知识(双线性插值,协方差矩阵,矩阵的特征值、特征向量),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0. 前言

MATLAB或者OpenCV里有很多封装好的函数,我们可以使用一行代码直接调用并得到处理结果。然而当问到具体是怎么实现的时候,却总是一脸懵逼,答不上来。前两天参加一个算法工程师的笔试题,其中就考到了这几点,感到非常汗颜!赶紧补习!

1. 双线性插值

在图像处理中,我们有时需要改变图像的尺寸,放大或者缩小。线性插值则是这类操作的关键算法。不管是放大还是缩小操作,其实都是一个像素映射的处理。如下图从小图到大图的映射,以及从大图到小图的映射。

图像来源:https://www.cnblogs.com/sdxk/p/4056223.html

然而,这两种操作都有一定的缺点。对于把小图放大的操作,因为小图中的像素点到大图中的像素点不是满射,因此大图中的点不能完全有像素值;对于将大图缩小的操作,大图中的点逆映射为小图中的点时,得到的像素坐标值可能不是整数。一种解决办法是采用最近邻方法,即将得到的坐标值与相邻的原图像中的像素坐标值比较,取离得最近的坐标值对应的像素值作为缩放后的图像对应的坐标值的像素值,但是这种办法可能导致图像失真,因此可以采用双线性差值的办法来进行计算相应的像素值。

 

对于图中红色的四个点(Q11,Q12,Q21,Q22)为源图像中存在的点,需要求在目标图像的插值(绿色点P)的坐标对应的像素值。

首先在X轴进行插值,R1,R2是两个插值过程中过渡的点.

然后在 y 方向进行线性插值,得到:

 

这样就得到所要的结果 f \left( x, y \right),

讲一个具体的例子:

比如源图像是尺寸是(100,150),现在要缩小尺寸0.6倍,即目标图像的尺寸是(60,90),则求目标图像在坐标为P[10,4]的点的像素值怎么求呢?

假设源图像是ori_im,目标图像是tar_im,tra_im[10,4]表示在行列分别是10和4时候图像的像素值。

此时,x=10/0.6=16.67,  y=4/0.6=6.67,而x1=16,x2=17,y1=6,y2=7, (x1,y1), (x1,y2), (x2,y1), (x2,y2)是在源图像中最接近tra_im[10,4]的4个点。

tra_im[10,4]=ori_im[x1,y1]*(17-16.67)*(7-6.67)+ori_im[x2,y1]*(16.67-16)*(6.67-6)+ori_im[x2,y1]*(17-16.67)*(6.67-6)+ori_im[x2,y2]*(16.67-16)*(6.67-6)

带入4个点在源图像中对应的像素值即可得到缩小后图像的像素值。

下面我用python实现了这个双线性插值,并和python中自带的skimage函数里封装的resize进行了效果对比,感觉效果差不多。(代码可能有点冗余)

我的代码:

# -*- coding: utf-8 -*-
# Author: lmh
# Time: 2018.10.22
from skimage import transform
import matplotlib.pyplot as plt
import matplotlib.image as mping
import numpy as np
def chazhi(x,y,im):
#x,y分别是缩放或者放大后对应源图像的浮点坐标位置,im是源图像,返回目标图像根据插值计算得到的像素值x1,y1=int(x),int(y) #x1,x2,x3,x4分别是插值坐标对应在源图像上下左右最近的点的坐标x2,y2=x1+1,y1+1pixel11,pixel21,pixel12,pixel22=im[x1-1,y1-1],im[x2-1,y1-1],im[x2-1,y1-1],im[x2-1,y2-1]#以下是根据双线性插值的公式求得的目标图像的该位置的像素值new_pixel=(x2-x)*(y2-y)*pixel11+(x-x1)*(y2-y)*pixel21+(x2-x)*(y-y1)*pixel12+(x-x1)*(y-y1)*pixel22return new_pixelim=mping.imread('C:\\Users\\shou\\Desktop\\photo.png')
im11=im
scale=0.4 #缩小程度
row,col=int(im.shape[0]*scale),int(im.shape[1]*scale)
im_sml=np.zeros([row,col,3])
for k in range(3):im1 = im[:, :, k]for i in range(row):for j in range(col):value=chazhi(i/scale,j/scale,im1)#3通道图像逐像素计算缩小或者放大后的新像素值im_sml[i][j][k]=valueim_narrow=im_smlscale=1.7  #扩大程度
row, col = int(im.shape[0] * scale), int(im.shape[1] * scale)
im_sml = np.zeros([row, col, 3])
for k in range(3):im1 = im[:, :, k]for i in range(row):for j in range(col):value = chazhi(i / scale, j / scale, im1)im_sml[i][j][k] = valueim_enlarge=im_sml
python_narrow=transform.resize(im, (175, 145)) #使用skimage自带函数resize图像,也可以直接写像上面一样写比例(0.4,1.7)
python_enlarge=transform.resize(im, (746, 617))#为了对比,两种方法特意放大和缩小一样大小plt.figure()
plt.subplot(151)
plt.imshow(im11,plt.cm.gray)
plt.title('Original')
# plt.axis('off')plt.subplot(152)
plt.imshow(im_narrow,plt.cm.gray)
plt.title('my_narrow')
# plt.axis('off')plt.subplot(153)
plt.imshow(python_narrow,plt.cm.gray)
plt.title('skimage_narrow')
# plt.axis('off')plt.subplot(154)
plt.imshow(im_enlarge,plt.cm.gray)
plt.title('my_enlarge')
# plt.axis('off')plt.subplot(1,5,5)
plt.imshow(python_enlarge,plt.cm.gray)
plt.title('skimage_enlarge')
# plt.axis('off')
plt.savefig('image_comp.png')

skimage的源码:

 

 效果图对比(原图[439,363,3];缩小0.4倍后为[175,145,3];放大1.7倍后为[746,617,3])

在博客:https://www.cnblogs.com/sdxk/p/4056223.html中,博主讲根据双线性插值的定义,我们自己写的函数图像处理的结果会因为坐标系的原因,而和MATLAB,OpenCV结果的完全不同。最好的解决方法就是,两个图像的几何中心重合,并且目标图像的每个像素之间都是等间隔的,并且都和两边有一定的边距,这也是matlab和openCV的做法。并给出了以下解决方法,其中m,n 是源图像尺寸;a,b是目标函数尺寸。然而我没有这些修改,与python封装的方法也没发现太大区别。

int x=(i+0.5)*m/a-0.5

int y=(j+0.5)*n/b-0.5

代替

int x=i*m/a

int y=j*n/b

补:经过查看Skimge的resize源码,发现确实里面添加了上面所说的策略(下面的代码),那么为什么我写的双线性代码没有这样做,图像的结果确和这样做的几乎一样?更加疑惑了

# take into account that 0th pixel is at position (0.5, 0.5)
dst_corners[:, 0] = col_scale * (src_corners[:, 0] + 0.5) - 0.5
dst_corners[:, 1] = row_scale * (src_corners[:, 1] + 0.5) - 0.5

2. 协方差矩阵

 

 

 

3. 求矩阵的特征值,特征向量,以及主成分

 

 

 

这篇关于图像算法的基础知识(双线性插值,协方差矩阵,矩阵的特征值、特征向量)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/988626

相关文章

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Python+wxPython构建图像编辑器

《Python+wxPython构建图像编辑器》图像编辑应用是学习GUI编程和图像处理的绝佳项目,本教程中,我们将使用wxPython,一个跨平台的PythonGUI工具包,构建一个简单的... 目录引言环境设置创建主窗口加载和显示图像实现绘制工具矩形绘制箭头绘制文字绘制临时绘制处理缩放和旋转缩放旋转保存编

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各