数据可视化(十二):Pandas太阳黑子数据、图像处理——离散极值、核密度、拟合曲线、奇异值分解等高级操作

本文主要是介绍数据可视化(十二):Pandas太阳黑子数据、图像处理——离散极值、核密度、拟合曲线、奇异值分解等高级操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Tips:"分享是快乐的源泉💧,在我的博客里,不仅有知识的海洋🌊,还有满满的正能量加持💪,快来和我一起分享这份快乐吧😊!

喜欢我的博客的话,记得点个红心❤️和小关小注哦!您的支持是我创作的动力!数据源存放在我的资源下载区啦!

数据可视化(十二):Pandas太阳黑子数据、图像处理——离散极值、核密度、拟合曲线、奇异值分解等高级操作

目录

  • 数据可视化(十二):Pandas太阳黑子数据、图像处理——离散极值、核密度、拟合曲线、奇异值分解等高级操作
    • 编程题
      • 1. 给定一组离散数据点,使用 scipy.interpolate 中的插值方法(如线性插值、样条插值等)对其进行插值,并绘制插值结果。
      • 2. 使用 scipy.optimize 中的优化算法,找到函数的最小值点,并在图中标出最小值点。
      • 3. 绘制正态分布数据的直方图和概率密度函数曲线
      • 4. 对一组实验数据进行曲线拟合,使用 scipy.optimize.curve_fit 函数拟合一个非线性函数,并绘制原始数据和拟合曲线。
      • 5. 对以下函数进行数值积分,并绘制函数曲线以及积分结果的区域。
      • 6. 使用 scipy.ndimage 中的函数对“gdufe_logo.jpg”进行平滑处理(模糊处理、高斯滤波)和边缘处理(Sobel滤波),并展示原始图片和处理后的效果。
      • 7. 对 "gdufe.jpeg" 图像进行奇异值分解,并使用20、100、200个奇异值重建图像,并将原始图像与重建图像进行可视化。
      • 8. 对太阳黑子数据集,采用scipy.signal.convolve 对其进行移动平均卷积。原始信号和卷积后的信号被绘制在同一图表上进行比较。
      • 9. 给定一段时间的销售额,使用 scipy.stats.linregress 进行线性回归,预测未来的销售额。
      • 10. 对 "形态学.jpg" 图像,应用膨胀、腐蚀、开运算和闭运算,并可视化处理后的图像。

编程题

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd# 支持中文
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS']  # SimHei 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

1. 给定一组离散数据点,使用 scipy.interpolate 中的插值方法(如线性插值、样条插值等)对其进行插值,并绘制插值结果。

from scipy.interpolate import interp1d# 给定离散数据点
x = np.linspace(0, 30, 10)
y = np.sin(x)# 添加噪声
np.random.seed(20240501)
noise = np.random.normal(0, 0.1, len(y))
y_noisy = y + noise# 线性插值
linear_interp = interp1d(x, y_noisy, kind='linear')# 样条插值
cubic_interp = interp1d(x, y_noisy, kind='cubic')# 在新的 x 值上进行插值
x_new = np.linspace(0, 30, 1000)
y_linear = linear_interp(x_new)
y_cubic = cubic_interp(x_new)# 绘制结果
plt.figure(figsize=(10, 6))
plt.plot(x, y_noisy, 'o', label='Noisy Data')
plt.plot(x_new, y_linear, label='Linear Interpolation')
plt.plot(x_new, y_cubic, label='Cubic Spline Interpolation')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Interpolation of Noisy Data')
plt.legend()
plt.grid(True)
plt.show()

在这里插入图片描述

2. 使用 scipy.optimize 中的优化算法,找到函数的最小值点,并在图中标出最小值点。

目标函数为:

f ( x ) = sin ⁡ ( 3 x ) + 1.5 x 2 − 2 x f(x) = \sin(3x) + 1.5x^2 - 2x f(x)=sin(3x)+1.5x22x

from scipy.optimize import minimize# 定义目标函数
def objective_function(x):return np.sin(3 * x) + 1.5 * x**2 - 2 * x# 定义搜索空间
bounds = [(-5, 5)]# 使用全局优化算法(差分进化算法)寻找最小值
result = differential_evolution(objective_function, bounds)# 打印最小值点
min_x = result.x
min_y = result.fun
print("Minimum point:", min_x)
print("Minimum value:", min_y)# 绘制目标函数
x_vals = np.linspace(-5, 5, 400)
y_vals = objective_function(x_vals)plt.figure(figsize=(10, 6))
plt.plot(x_vals, y_vals, label='Objective Function')
plt.scatter(min_x, min_y, color='red', label='Minimum Point')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.title('Global Minimization of Objective Function')
plt.legend()
plt.grid(True)
plt.show()

在这里插入图片描述

3. 绘制正态分布数据的直方图和概率密度函数曲线

from scipy.stats import norm# 生成正态分布的随机样本
np.random.seed(20240501)
sample_size = 1000
mean = 0
std_dev = 1
data = np.random.normal(mean, std_dev, sample_size)# 添加噪声
noise_mean = 0
noise_std_dev = 0.2
noise = np.random.normal(noise_mean, noise_std_dev, sample_size)
noisy_data = data + noise# 绘制直方图
plt.figure(figsize=(10, 6))
plt.hist(noisy_data, bins=30, density=True, alpha=0.6, color='b', label='Histogram')# 绘制概率密度函数曲线
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, mean, std_dev)
plt.plot(x, p, 'k', linewidth=2, label='PDF')plt.title('Histogram and PDF of Noisy Normal Distribution')
plt.xlabel('Value')
plt.ylabel('Density')
plt.legend()
plt.grid(True)
plt.show()

在这里插入图片描述

4. 对一组实验数据进行曲线拟合,使用 scipy.optimize.curve_fit 函数拟合一个非线性函数,并绘制原始数据和拟合曲线。

from scipy.optimize import curve_fit# 定义非线性函数
def nonlinear_function(x, a, b, c):return a * np.sin(b * x) + c# 生成实验数据
np.random.seed(20240501)
x_data = np.linspace(0, 10, 100)
y_data = 2 * np.sin(1.5 * x_data) + 1 + np.random.normal(0, 0.5, len(x_data))# 使用 curve_fit 函数拟合非线性函数
popt, pcov = curve_fit(nonlinear_function, x_data, y_data)# 获取拟合参数
a_fit, b_fit, c_fit = popt# 绘制原始数据和拟合曲线
plt.figure(figsize=(10, 6))
plt.scatter(x_data, y_data, label='Original Data')
plt.plot(x_data, nonlinear_function(x_data, a_fit, b_fit, c_fit), 'r-', label='Fitted Curve')
plt.title('Curve Fitting with Nonlinear Function')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.grid(True)
plt.show()

在这里插入图片描述

5. 对以下函数进行数值积分,并绘制函数曲线以及积分结果的区域。

要积分的函数为:

f ( x ) = sin ⁡ ( x ) + 1 2 cos ⁡ ( 2 x ) f(x) = \sin(x) + \frac{1}{2} \cos(2x) f(x)=sin(x)+21cos(2x)

对该函数从 x = 0 x=0 x=0 x = 2 π x=2\pi x=2π 进行数值积分。

from scipy.integrate import quad# 以下编码
# 定义函数
def f(x):return np.sin(x) + 0.5 * np.cos(2 * x)# 定义积分区间
a = 0
b = 2 * np.pi# 数值积分
integral_result, error = quad(f, a, b)# 生成 x 值
x_values = np.linspace(a, b, 100)# 计算函数值
y_values = f(x_values)# 绘制函数曲线和积分区域
plt.figure(figsize=(10, 6))
plt.plot(x_values, y_values, label='Function Curve')
plt.fill_between(x_values, y_values, alpha=0.3, label='Integral Area')
plt.title('Function Curve and Integral Area')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.axhline(0, color='black', linewidth=0.5)  # 绘制 x 轴
plt.axvline(0, color='black', linewidth=0.5)  # 绘制 y 轴
plt.legend()
plt.grid(True)
plt.show()print("Integral result:", integral_result)

在这里插入图片描述

6. 使用 scipy.ndimage 中的函数对“gdufe_logo.jpg”进行平滑处理(模糊处理、高斯滤波)和边缘处理(Sobel滤波),并展示原始图片和处理后的效果。

from scipy import ndimage
from PIL import Image# 读取图像
image = Image.open("../data/gdufe_logo.jpg")
image = image.convert("L")  # 将图像转换为灰度图像# 平滑处理(高斯滤波)
smoothed_image = ndimage.gaussian_filter(image, sigma=3)# 边缘处理(Sobel滤波)
sobel_image = ndimage.sobel(image)# 展示原始图片和处理后的效果
plt.figure(figsize=(12, 6))plt.subplot(1, 3, 1)
plt.imshow(image, cmap='gray')
plt.title('Original Image')
plt.axis('off')plt.subplot(1, 3, 2)
plt.imshow(smoothed_image, cmap='gray')
plt.title('Smoothed Image (Gaussian Filter)')
plt.axis('off')plt.subplot(1, 3, 3)
plt.imshow(sobel_image, cmap='gray')
plt.title('Edges (Sobel Filter)')
plt.axis('off')plt.show()

在这里插入图片描述

7. 对 “gdufe.jpeg” 图像进行奇异值分解,并使用20、100、200个奇异值重建图像,并将原始图像与重建图像进行可视化。

注意:用摊平后的图像进行 SVD 操作,然后再重塑展现,从而可以处理彩色RGB图像。

from PIL import Image
from scipy.linalg import svd# 读取彩色图像
image = Image.open("../data/gdufe.jpeg")# 将图像转换为 numpy 数组
image_array = np.array(image)# 获取图像的尺寸
m, n, c = image_array.shape# 摊平图像数组
flat_image_array = image_array.reshape(-1, c)# 进行奇异值分解
U, s, Vt = np.linalg.svd(flat_image_array, full_matrices=False)# 重建图像函数
def reconstruct_image(U, s, Vt, num_singular_values):# 使用指定数量的奇异值重建图像reconstructed_image_array = np.dot(U[:, :num_singular_values], np.dot(np.diag(s[:num_singular_values]), Vt[:num_singular_values, :]))# 重塑图像数组形状reconstructed_image_array = np.clip(reconstructed_image_array, 0, 255).astype(np.uint8)reconstructed_image = reconstructed_image_array.reshape(m, n, c)return Image.fromarray(reconstructed_image)# 使用不同数量的奇异值重建图像并可视化
num_singular_values_list = [20, 100, 200]plt.figure(figsize=(15, 5))for i, num_singular_values in enumerate(num_singular_values_list):plt.subplot(1, len(num_singular_values_list), i + 1)reconstructed_image = reconstruct_image(U, s, Vt, num_singular_values)plt.imshow(reconstructed_image)plt.title(f'{num_singular_values} Singular Values')plt.axis('off')plt.show()

在这里插入图片描述

8. 对太阳黑子数据集,采用scipy.signal.convolve 对其进行移动平均卷积。原始信号和卷积后的信号被绘制在同一图表上进行比较。

from scipy import signal
from statsmodels import datasets# 加载太阳黑子数据集
sp = datasets.sunspots.load_pandas().data['SUNACTIVITY']# 定义移动平均窗口大小
window_size = 11# 计算移动平均
moving_avg = np.convolve(sp, np.ones(window_size)/window_size, mode='valid')# 创建时间轴
time = np.arange(len(sp))# 绘制原始信号和移动平均后的信号
plt.figure(figsize=(10, 6))
plt.plot(time, sp, label='Original Signal')
plt.plot(time[window_size-1:], moving_avg, label=f'Moving Average (Window Size {window_size})')
plt.title('Sunspot Activity with Moving Average Convolution')
plt.xlabel('Time')
plt.ylabel('Sunspot Activity')
plt.legend()
plt.grid(True)
plt.show()

在这里插入图片描述

9. 给定一段时间的销售额,使用 scipy.stats.linregress 进行线性回归,预测未来的销售额。

from scipy.stats import linregress# 给定时间段的销售额数据
sales = np.array([100, 120, 130, 140, 150, 160, 170, 180, 190, 200])
time = np.arange(len(sales))# 进行线性回归
slope, intercept, r_value, p_value, std_err = linregress(time, sales)# 使用线性回归方程预测未来销售额
future_time = np.arange(len(sales), len(sales) + 5)  # 假设预测未来5个时间点
future_sales = slope * future_time + intercept# 绘制原始销售额和线性回归线
plt.figure(figsize=(10, 6))
plt.scatter(time, sales, label='Actual Sales')
plt.plot(time, slope * time + intercept, color='red', label='Linear Regression')
plt.scatter(future_time, future_sales, color='green', label='Predicted Sales')
plt.title('Sales Linear Regression and Prediction')
plt.xlabel('Time')
plt.ylabel('Sales')
plt.legend()
plt.grid(True)
plt.show()# 输出预测未来销售额
print("预测未来销售额:")
for t, s in zip(future_time, future_sales):print(f"时间 {t}: 销售额 {s}")

在这里插入图片描述

10. 对 “形态学.jpg” 图像,应用膨胀、腐蚀、开运算和闭运算,并可视化处理后的图像。

运算参数:size = (10, 10)

from PIL import Image
from scipy import ndimage# 打开图像
image = Image.open("../data/形态学.jpg")# 将图像转换为灰度图像
image_gray = image.convert("L")# 转换为数组
image_array = np.array(image_gray)# 定义运算参数
size = (10, 10)# 应用膨胀
dilated_image = ndimage.grey_dilation(image_array, size=size)# 应用腐蚀
eroded_image = ndimage.grey_erosion(image_array, size=size)# 应用开运算
opened_image = ndimage.grey_opening(image_array, size=size)# 应用闭运算
closed_image = ndimage.grey_closing(image_array, size=size)# 可视化处理后的图像
plt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)
plt.imshow(image_array, cmap='gray')
plt.title('Original Image')plt.subplot(2, 3, 2)
plt.imshow(dilated_image, cmap='gray')
plt.title('Dilated Image')plt.subplot(2, 3, 3)
plt.imshow(eroded_image, cmap='gray')
plt.title('Eroded Image')plt.subplot(2, 3, 4)
plt.imshow(opened_image, cmap='gray')
plt.title('Opened Image')plt.subplot(2, 3, 5)
plt.imshow(closed_image, cmap='gray')
plt.title('Closed Image')plt.tight_layout()
plt.show()

在这里插入图片描述

这篇关于数据可视化(十二):Pandas太阳黑子数据、图像处理——离散极值、核密度、拟合曲线、奇异值分解等高级操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/987587

相关文章

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

sysmain服务可以禁用吗? 电脑sysmain服务关闭后的影响与操作指南

《sysmain服务可以禁用吗?电脑sysmain服务关闭后的影响与操作指南》在Windows系统中,SysMain服务(原名Superfetch)作为一个旨在提升系统性能的关键组件,一直备受用户关... 在使用 Windows 系统时,有时候真有点像在「开盲盒」。全新安装系统后的「默认设置」,往往并不尽编

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

Android协程高级用法大全

《Android协程高级用法大全》这篇文章给大家介绍Android协程高级用法大全,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友跟随小编一起学习吧... 目录1️⃣ 协程作用域(CoroutineScope)与生命周期绑定Activity/Fragment 中手