全局唯一ID生成常见的几种方式和twitter/snowflake(雪花算法)解析

本文主要是介绍全局唯一ID生成常见的几种方式和twitter/snowflake(雪花算法)解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

全局唯一ID生成常见的几种方式和twitter/snowflake(雪花算法)解析 

全局唯一ID生成常见的几种方式:

1,(twitter/snowflake)雪花算法

2,利用数据库的auto_increment特性

3,UUID

4,其他(如redis也有incr,redis加lua脚本实现twitter/snowflake算法)

 

一、 (twitter/snowflake)

使用了long类型,long类型为8字节工64位。可表示的最大值位2^64-1(18446744073709551615,装换成十进制共20位的长度,这个是无符号的长整型的最大值)。

单常见使用的是long 不是usign long所以最大值为2^63-1(9223372036854775807,装换成十进制共19的长度,这个是long的长整型的最大值)

下面程序来自大象博客:

http://www.blogjava.net/bolo/archive/2015/07/13/426200.html


public class IdGen {private long workerId;private long datacenterId;private long sequence = 0L;private long twepoch = 1288834974657L;//Thu, 04 Nov 2010 01:42:54 GMTprivate long workerIdBits = 5L;//节点ID长度private long datacenterIdBits = 5L;//数据中心ID长度private long maxWorkerId = -1L ^ (-1L << workerIdBits);//最大支持机器节点数0~31,一共32个private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);//最大支持数据中心节点数0~31,一共32个private long sequenceBits = 12L;//序列号12位private long workerIdShift = sequenceBits;//机器节点左移12位private long datacenterIdShift = sequenceBits + workerIdBits;//数据中心节点左移17位private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;//时间毫秒数左移22位private long sequenceMask = -1L ^ (-1L << sequenceBits);//最大为4095private long lastTimestamp = -1L;private static class IdGenHolder {private static final IdGen instance = new IdGen();}public static IdGen get(){return IdGenHolder.instance;}public IdGen() {this(0L, 0L);}public IdGen(long workerId, long datacenterId) {if (workerId > maxWorkerId || workerId < 0) {throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));}if (datacenterId > maxDatacenterId || datacenterId < 0) {throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));}this.workerId = workerId;this.datacenterId = datacenterId;}public synchronized long nextId() {long timestamp = timeGen();//获取当前毫秒数//如果服务器时间有问题(时钟后退) 报错。if (timestamp < lastTimestamp) {throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));}//如果上次生成时间和当前时间相同,在同一毫秒内if (lastTimestamp == timestamp) {//sequence自增,因为sequence只有12bit,所以和sequenceMask相与一下,去掉高位sequence = (sequence + 1) & sequenceMask;//判断是否溢出,也就是每毫秒内超过4095,当为4096时,与sequenceMask相与,sequence就等于0if (sequence == 0) {timestamp = tilNextMillis(lastTimestamp);//自旋等待到下一毫秒}} else {sequence = 0L;//如果和上次生成时间不同,重置sequence,就是下一毫秒开始,sequence计数重新从0开始累加}lastTimestamp = timestamp;// 最后按照规则拼出ID。// 000000000000000000000000000000000000000000  00000            00000       000000000000// time                                      datacenterId      workerId     sequence// return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift)//        | (workerId << workerIdShift) | sequence;long longStr= ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift) | (workerId << workerIdShift) | sequence;// System.out.println(longStr);return longStr;}protected long tilNextMillis(long lastTimestamp) {long timestamp = timeGen();while (timestamp <= lastTimestamp) {timestamp = timeGen();}return timestamp;}protected long timeGen() {return System.currentTimeMillis();}}

测试程序

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;import org.junit.Test;public class GeneratorTest {@Testpublic void testIdGenerator() {long avg = 0;for (int k = 0; k < 10; k++) {List<Callable<Long>> partitions = new ArrayList<Callable<Long>>();final IdGen idGen = IdGen.get();for (int i = 0; i < 1400000; i++) {partitions.add(new Callable<Long>() {@Overridepublic Long call() throws Exception {return idGen.nextId();}});}ExecutorService executorPool = Executors.newFixedThreadPool(Runtime.getRuntime().availableProcessors());try {long s = System.currentTimeMillis();executorPool.invokeAll(partitions, 10000, TimeUnit.SECONDS);long s_avg = System.currentTimeMillis() - s;avg += s_avg;System.out.println("完成时间需要: " + s_avg / 1.0e3 + "秒");executorPool.shutdown();} catch (Exception e) {e.printStackTrace();}}System.out.println("平均完成时间需要: " + avg / 10 / 1.0e3 + "秒");}}

我们生产也是按照这个twitter/snowflake的算法来写的。

 

二、 利用auto_increment特性

insert into

replace into 

 

三、 UUID

常见的方式。可以利用数据库也可以利用程序生成,一般来说全球唯一。

优点:

1)简单,代码方便。

2)生成ID性能非常好,基本不会有性能问题。

3)全球唯一,在遇见数据迁移,系统数据合并,或者数据库变更等情况下,可以从容应对。

缺点:

1)没有排序,无法保证趋势递增。

2)UUID往往是使用字符串存储,查询的效率比较低。

3)存储空间比较大,如果是海量数据库,就需要考虑存储量的问题。

4)传输数据量大

5)不可读。

变种的UUID

1)为了解决UUID不可读,可以使用UUID to Int64的方法。

2)为了解决UUID无序的问题,NHibernate在其主键生成方式中提供了Comb算法(combined guid/timestamp)。保留GUID的10个字节,用另6个字节表示GUID生成的时间(DateTime)。

 

四、 其他

如:1,redis的incr 和INCRBY来实现可以实现自增。 2,redis-lua脚本实现twitter/snowflake算法。3,MongoDB的ObjectId。

这篇关于全局唯一ID生成常见的几种方式和twitter/snowflake(雪花算法)解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/987543

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

JDK21对虚拟线程的几种用法实践指南

《JDK21对虚拟线程的几种用法实践指南》虚拟线程是Java中的一种轻量级线程,由JVM管理,特别适合于I/O密集型任务,:本文主要介绍JDK21对虚拟线程的几种用法,文中通过代码介绍的非常详细,... 目录一、参考官方文档二、什么是虚拟线程三、几种用法1、Thread.ofVirtual().start(

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配