2. Pytorch入门教程——创建Cifar10 Pytorch数据集

2024-05-14 00:08

本文主要是介绍2. Pytorch入门教程——创建Cifar10 Pytorch数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我们使用一个很经典的数据集Cifar10,而该数据集可以直接通过Pytorch内置函数获取到。

一、导入所需的库

import torch ## pytorch
import torchvision ## 迁移学习模型和许多其他视觉相关类
from torch import nn ## Pytorch核心神经网络模型类
from torch import optim ## 包含几个Pytorch优化器类
import torch.nn.functional as F ## 包含几个Pytorch提供的实用函数from torchvision import datasets, transforms, models ## 对于数据集和变换的一些计算机视觉相关类
from torch.utils.data import * ## 包含几个数据操作的实用函数
from PIL import Image
import numpy as np

二、创建CIFAR10 Pytorch数据集

  • 从torchvision下载CIFAR10训练集和测试集;
  • 首先设置train=True,表明我们下载训练集。然后设为False来下载测试集;
  • 设置download=True,由于我们是第一次获取这个数据集。因此,它将首先从CIFAR10类中预先指定的URL下载。
  • 在首次运行这个cell,成功的下载数据集后,应该改变为False来避免每次下载;
  • 以下操作的结果将是两个数据集对象,分别表示CIFAR10训练集和测试集。
train_dataset = datasets.CIFAR10('Cifar10', train=True,download=True)test_dataset = datasets.CIFAR10('Cifar10', train=False,download=True)

这里有两个来自torchvision.datasets.cifar的数据集对象。这是Pytorch的Dataset类的一个子类,Dataset是表示任何数据集的主类。这个特殊的类表示存储在其内部数据结构中的CIFAR10数据。稍后,这些对象将被传递给一个Pytorch Dataloader对象(稍后解释)来处理这些图像。

我们可以验证两个数据集的长度(图像的数量)

len(train_dataset),len(test_dataset)

(50000, 10000)
如上所示,我们分别有50000张图片的训练集和10000张图片的测试集。

二、张量(Tensors)快速介绍

张量是一种表示单个类型(整数或浮点数等)的n维数据对象的通用方式。例如:

  • 一个单值(整型或者浮点值)是一个0维张量;
  • 一个有N个元素的数组是一维张量;
  • 一个有M行N列的矩阵是一个二维张量(MxN);
  • 用三个矩阵表示的三个RGB(红,绿,蓝)颜色通道的MxN图像是一个三维张量(3xMxN); 图像张量包含在dataset对象中的字段train_data。让我们来看看代表一个图像张量的形状。
train_dataset.data[0].shape

(32, 32, 3)
说明我们的图片大小为3通道32x32,让我们用matplotlib.plyplot模块查看图片

%matplotlib inline
import matplotlib.pyplot as plt
plt.imshow(train_dataset.data[100])

在这里插入图片描述
这似乎是艘船,由于分辨率低(32x32),图片非常模糊

这篇关于2. Pytorch入门教程——创建Cifar10 Pytorch数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/987196

相关文章

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

idea+spring boot创建项目的搭建全过程

《idea+springboot创建项目的搭建全过程》SpringBoot是Spring社区发布的一个开源项目,旨在帮助开发者快速并且更简单的构建项目,:本文主要介绍idea+springb... 目录一.idea四种搭建方式1.Javaidea命名规范2JavaWebTomcat的安装一.明确tomcat

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池