【回溯算法】【Python实现】装载问题

2024-05-13 22:36

本文主要是介绍【回溯算法】【Python实现】装载问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • @[toc]
      • 问题描述
      • 问题转换
      • 回溯算法
      • `Python`实现
      • 时间复杂性

问题描述

  • 有一批共 n n n个集装箱要装上 2 2 2艘载重量分别为 c 1 c_{1} c1 c 2 c_{2} c2的轮船,其中集装箱 i i i的重量为 w i w_{i} wi,且 ∑ i = 1 n w i ≤ c 1 + c 2 \displaystyle\sum\limits_{i = 1}^{n}{w_{i}} \leq c_{1} + c_{2} i=1nwic1+c2
  • 是否有一个合理的装载方案可将这 n n n个集装箱装上这两艘轮船

问题转换

  • 先将第一艘轮船尽可能装满,然后将剩余的集装箱装上第二艘轮船
  • 装载问题等价于以下特殊的 0 − 1 0-1 01背包问题

{ max ⁡ ∑ i = 1 n w i x i s . t . ∑ i = 1 n w i x i ≤ c 1 x i ∈ { 0 , 1 } , 1 ≤ i ≤ n \begin{cases} \max\displaystyle\sum\limits_{i = 1}^{n}{w_{i} x_{i}} \\ s.t. \displaystyle\sum\limits_{i = 1}^{n}{w_{i} x_{i}} \leq c_{1} \end{cases} \kern{2em} x_{i} \in \set{0 , 1} , \kern{1em} 1 \leq i \leq n maxi=1nwixis.t.i=1nwixic1xi{0,1},1in


回溯算法

  • 用子集树表示解空间,根结点为第 0 0 0
  • 约束函数用于剪去不满足约束条件 ∑ i = 1 n w i x i ≤ c 1 \displaystyle\sum\limits_{i = 1}^{n}{w_{i} x_{i}} \leq c_{1} i=1nwixic1的子树
    • 在子集树的第 j j j层的结点 Z Z Z处,用 c w cw cw记为当前的装载重量,即 c w = ∑ i = 1 j w i x i cw = \displaystyle\sum\limits_{i = 1}^{j}{w_{i} x_{i}} cw=i=1jwixi
    • c w > c 1 cw > c_{1} cw>c1时,以结点 Z Z Z为根的子树中所有结点都不满足约束条件,因而该子树中的解均为不可行解,故可将该子树剪去
  • 限界函数用于剪去不含最优解的子树,从而改进算法在平均情况下的运行效率
    • Z Z Z是解空间树第 i i i层上的当前扩展结点, c w cw cw是当前载重量, b e s t w bestw bestw是当前最优载重量, r r r是剩余集装箱的重量,即 r = ∑ j = i + 1 n w j r = \displaystyle\sum\limits_{j = i + 1}^{n}{w_{j}} r=j=i+1nwj
    • 定义限界函数为 c w + r cw + r cw+r,在以 Z Z Z为根的子树中任一叶结点所相应的重量均不超过 c w + r cw + r cw+r,当 c w + r ≤ b e s t w cw + r \leq bestw cw+rbestw时,可将 Z Z Z的子树剪去
  • i = n i = n i=n时,算法搜索至叶结点,其相应的装载重量为 c w cw cw,如果 c w > b e s t w cw > bestw cw>bestw,则表示当前解优于当前最优解,此时更新 b e s t w bestw bestw
  • i < n i < n i<n时,当前扩展结点 Z Z Z是子集树中的内部结点
    • 该结点的左儿子表示 x [ i + 1 ] = 1 x[i + 1] = 1 x[i+1]=1的情形,仅当 c w + w [ i + 1 ] ≤ c 1 cw + w[i + 1] \leq c_{1} cw+w[i+1]c1时进入左子树,对左子树递归搜索
    • 该结点的右儿子表示 x [ i + 1 ] = 0 x[i + 1] = 0 x[i+1]=0的情形,由于可行结点的右儿子结点总是可行的,因此进入右子树时不需要检查约束函数,只需要检查限界函数

Python实现

def backtrack_loading(weights, capacity):n = len(weights)best_solution = []best_value = 0def constraint(weight):# 约束函数: 检查当前解是否满足容量限制return weight <= capacitydef bound(weight, index):# 限界函数: 计算当前解的重量总和加上剩余物品重量作为上界, 用于剪枝weight += sum(weight for weight in weights[index + 1:])return weightdef backtrack(solution, weight, value, index):nonlocal best_solution, best_valueif index == n:# 已经遍历完所有物品if value > best_value:# 如果当前解的重量更大, 更新最优解best_solution = solutionbest_value = valuereturn# 尝试选择当前物品weight += weights[index]if constraint(weight):# 如果满足约束函数, 继续探索下一个物品backtrack(solution + [weights[index]], weight, value + weights[index], index + 1)# 恢复回溯前状态weight -= weights[index]# 尝试不选择当前物品if bound(weight, index) > best_value:# 如果当前解的上界仍然可能更好, 继续探索下一个物品backtrack(solution, weight, value, index + 1)# 开始回溯搜索backtrack([], 0, 0, 0)return best_solution, best_valueweights = [2, 4, 5, 7]
capacity = 10best_solution, best_value = backtrack_loading(weights, capacity)print(f'最优解: {best_solution}')
print(f'最优值: {best_value}')
最优解: [2, 7]
最优值: 9

时间复杂性

  • 计算上界需要 O ( n ) O(n) O(n)时间,在最坏情况下有 O ( 2 n ) O(2^{n}) O(2n)个右儿子结点需要计算上界
  • 所以解装载问题的回溯算法所需的计算时间为 O ( n 2 n ) O(n 2^{n}) O(n2n)

这篇关于【回溯算法】【Python实现】装载问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/987022

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买