数据科学:使用Optuna进行特征选择

2024-05-13 17:36

本文主要是介绍数据科学:使用Optuna进行特征选择,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好,特征选择是机器学习流程中的关键步骤,在实践中通常有大量的变量可用作模型的预测变量,但其中只有少数与目标相关。特征选择包括找到这些特征的子集,主要用于改善泛化能力、助力推断预测、提高训练效率。有许多技术可用于执行特征选择,每种技术的复杂性不同。

本文将介绍一种使用强大的开源优化工具Optuna来执行特征选择任务的创新方法,主要思想是通过有效地测试不同的特征组合(例如,不是逐个尝试它们)来处理各种任务的特征选择的灵活工具。下面,将通过一个实际示例来实施这种方法,并将其与其他常见的特征选择策略进行比较。

1.数据准备

将利用基于Kaggle上的Mobile Price Classification数据集进行分类任务。该数据集包含20个特征,其中包括:'battery_power'、'clock_speed'和'ram' 等,用于预测'price_range'特征,该特征可以分为四个不同的价格范围:0、1、2和3。我们将数据集分成训练集和测试集,并在训练集中准备了一个5折交叉验证分割。

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFoldSEED = 32
# Load data
df = pd.read_csv("mpc_train.csv")# Train - test split
df_train, df_test = train_test_split(df, test_size=0.2, stratify=df.iloc[:,-1], random_state=SEED)
df_train = df_train.reset_index(drop=True)
df_test = df_test.reset_index(drop=True)# The last column is the target variable
X_train = df_train.iloc[:,0:20]
y_train = df_train.iloc[:,-1]
X_test = df_test.iloc[:,0:20]
y_test = df_test.iloc[:,-1]# Stratified kfold over the train set for cross validation
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=SEED)
splits = list(skf.split(X_train, y_train))
len(splits)

将使用随机森林分类器模型,使用scikit-learn实现并采用默认参数。我们首先使用所有特征训练模型来设置基准。我们将测量的指标是针对所有四个价格范围加权的F1分数。在对训练集进行学习后,我们在测试集上对其进行评估,得到的F1分数约为0.87。

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import f1_score, classification_reportmodel = RandomForestClassifier(random_state=SEED)
model.fit(X_train,y_train)
preds = model.predict(X_test)print(classification_report(y_test, preds))
print(f"Global F1: {f1_score(y_test, preds, average='weighted')}")

特征选择的目标是通过选择一个较少的特征集来提高评估指标。首先将描述基于Optuna的方法如何工作,然后测试并将其与其他常见的特征选择策略进行比较。

2.用Optuna进行特征选择

Optuna是一个用于超参数调优的优化框架,采用贝叶斯优化技术搜索参数空间。与传统的网格或随机搜索相比,Optuna更高效。我们使用默认的TPESampler采样器,它基于Tree-structured Parzen Estimator算法(TPE)。

在特征选择的情况下,不是调整模型的超参数,而是选择特征。使用训练数据集,分成五个折交叉,在每次试验中训练模型并评估性能。目标是最大化F1分数,同时对使用的特征进行小惩罚以鼓励更小的特征集。

下面是执行特征选择搜索的实现类:

import optunaclass FeatureSelectionOptuna:"""This class implements feature selection using Optuna optimization framework.Parameters:- model (object): The predictive model to evaluate; this should be any object that implements fit() and predict() methods.- loss_fn (function): The loss function to use for evaluating the model performance. This function should take the true labels and thepredictions as inputs and return a loss value.- features (list of str): A list containing the names of all possible features that can be selected for the model.- X (DataFrame): The complete set of feature data (pandas DataFrame) from which subsets will be selected for training the model.- y (Series): The target variable associated with the X data (pandas Series).- splits (list of tuples): A list of tuples where each tuple contains two elements, the train indices and the validation indices.- penalty (float, optional): A factor used to penalize the objective function based on the number of features used."""def __init__(self,model,loss_fn,features,X,y,splits,penalty=0):self.model = modelself.loss_fn = loss_fnself.features = featuresself.X = Xself.y = yself.splits = splitsself.penalty = penaltydef __call__(self,trial: optuna.trial.Trial):# Select True / False for each featureselected_features = [trial.suggest_categorical(name, [True, False]) for name in self.features]# List with names of selected featuresselected_feature_names = [name for name, selected in zip(self.features, selected_features) if selected]# Optional: adds a penalty for the amount of features usedn_used = len(selected_feature_names)total_penalty = n_used * self.penaltyloss = 0for split in self.splits:train_idx = split[0]valid_idx = split[1]X_train = self.X.iloc[train_idx].copy()y_train = self.y.iloc[train_idx].copy()X_valid = self.X.iloc[valid_idx].copy()y_valid = self.y.iloc[valid_idx].copy()X_train_selected = X_train[selected_feature_names].copy()X_valid_selected = X_valid[selected_feature_names].copy()# Train model, get predictions and accumulate lossself.model.fit(X_train_selected, y_train)pred = self.model.predict(X_valid_selected)loss += self.loss_fn(y_valid, pred)# Take the average loss across all splitsloss /= len(self.splits)# Add the penalty to the lossloss += total_penaltyreturn loss

将每个特征视为一个参数,可以取True或False值,表示是否应该将该特征包含在模型中。使用suggest_categorical方法,让Optuna为每个特征选择两个可能的值之一。

初始化Optuna研究并进行100次试验的搜索,将第一个试验排入队列,使用所有特征作为搜索的起点,允许Optuna将后续试验与完全特征模型进行比较:

from optuna.samplers import TPESamplerdef loss_fn(y_true, y_pred):"""Returns the negative F1 score, to be treated as a loss function."""res = -f1_score(y_true, y_pred, average='weighted')return resfeatures = list(X_train.columns)model = RandomForestClassifier(random_state=SEED)sampler = TPESampler(seed = SEED)
study = optuna.create_study(direction="minimize",sampler=sampler)# We first try the model using all features
default_features = {ft: True for ft in features}
study.enqueue_trial(default_features)study.optimize(FeatureSelectionOptuna(model=model,loss_fn=loss_fn,features=features,X=X_train,y=y_train,splits=splits,penalty = 1e-4,), n_trials=100)

完成了100次试验后,从研究中获取最佳试验和其中使用的特征,如下所示:

[‘battery_power’, ‘blue’, ‘dual_sim’, ‘fc’, ‘mobile_wt’, ‘px_height’, ‘px_width’, ‘ram’, ‘sc_w’]

上述过程从原始的20个特征中,搜索最终只选出了其中的9个特征变量,这是一个显著的减少。这些特征产生了约为-0.9117的最小验证损失,这意味着它们在所有折叠中实现了约为0.9108的平均F1分数(在考虑到惩罚项后)。

下一步是使用这些选定的特征在整个训练集上训练模型,并在测试集上对其进行评估。结果是约为0.882的F1分数:

# Train - test split
c=['battery_power', 'blue', 'dual_sim', 'fc', 'mobile_wt', 'px_height', 'px_width', 'ram', 'sc_w','price_range']
df_c=df[c]
df_train, df_test = train_test_split(df_c, test_size=0.2, stratify=df.iloc[:,-1], random_state=SEED)
df_train = df_train.reset_index(drop=True)
df_test = df_test.reset_index(drop=True)# The last column is the target variable
X_train = df_train.iloc[:,0:9]
y_train = df_train.iloc[:,-1]
X_test = df_test.iloc[:,0:9]
y_test = df_test.iloc[:,-1]# Stratified kfold over the train set for cross validation
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=SEED)
splits = list(skf.split(X_train, y_train))model = RandomForestClassifier(random_state=SEED)
model.fit(X_train,y_train)
preds = model.predict(X_test)print(classification_report(y_test, preds))
print(f"Global F1: {f1_score(y_test, preds, average='weighted')}")

通过选择合适的特征组合,能够将特征集减少了一半以上,同时仍然实现了比全特征集更高的F1分数。下面是Optuna进行特征选择的一些优缺点:

优点:

  • 高效地搜索特征集,考虑了哪些特征组合最有可能产生良好的结果。

  • 适用于许多场景:只要有模型和损失函数,我们就可以用它来处理任何特征选择任务。

  • 看到了整体情况:与评估单个特征的方法不同,Optuna考虑了哪些特征彼此之间往往配合得好,哪些不好。

  • 作为优化过程的一部分动态确定特征数量。这可以通过惩罚项进行调节。

缺点:

  • 与简单方法相比,不那么直观,对于较小和较简单的数据集可能不值得使用。

  • 尽管与其他方法(如穷举搜索)相比需要的试验次数要少得多,但通常仍需要大约100到1000次试验。根据模型和数据集的不同,这可能耗时且计算成本高昂。

3.其他特征选择方法

SelectKBest是scikit-learn库中的一个特征选择工具,用于选择与目标变量相关性最高的k个特征。它基于给定的评分函数对每个特征进行评分,并返回得分最高的k个特征。这个工具通常用于过滤方法中,它不需要构建模型,而是直接对特征进行评估和选择。通过选择与目标变量高度相关的特征,SelectKBest可以帮助提高模型的预测性能和泛化能力。

from sklearn.feature_selection import SelectKBest, chi2
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
SEED = 32
# Load data
df = pd.read_csv("mpc_train.csv")# Train - test split
df_train, df_test = train_test_split(df, test_size=0.2, stratify=df.iloc[:,-1], random_state=SEED)
df_train = df_train.reset_index(drop=True)
df_test = df_test.reset_index(drop=True)# The last column is the target variable
X_train = df_train.iloc[:,0:20]
y_train = df_train.iloc[:,-1]
X_test = df_test.iloc[:,0:20]
y_test = df_test.iloc[:,-1]skb = SelectKBest(score_func=chi2, k=10)
X_train_selected = skb.fit_transform(X_train, y_train)
X_test_selected = skb.transform(X_test)# Train Random Forest Classifier
model = RandomForestClassifier(random_state=SEED)
model.fit(X_train_selected, y_train)# Predictions
preds = model.predict(X_test_selected)# Evaluation
print(classification_report(y_test, preds))
print(f"Global F1: {f1_score(y_test, preds, average='weighted')}")

通过上述对比,可以看出通过Optuna进行特征选择有更高的效率和更好的性能指标。使用Optuna这一强大的优化工具来进行特征选择任务,通过有效地搜索空间,它能够在相对较少的试验中找到好的特征子集。而且它还具有灵活性,并且只要定义模型和损失函数,可以适应许多场景。

这篇关于数据科学:使用Optuna进行特征选择的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/986370

相关文章

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.