深度学习技术之加宽前馈全连接神经网络

2024-05-13 16:12

本文主要是介绍深度学习技术之加宽前馈全连接神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习技术

  • 加宽前馈全连接神经网络
    • 1. Functional API 搭建神经网络模型
      • 1.1 利用Functional API编写宽深神经网络模型进行手写数字识别
        • 1.1.1 导入需要的库
        • 1.1.2 加载虹膜(Iris)数据集
        • 1.1.3 分割训练集和测试集
        • 1.1.4 定义模型输入层
        • 1.1.5 添加隐藏层
        • 1.1.6 拼接输入层和第二个隐藏层
        • 1.1.7 添加输出层
        • 1.1.8 创建模型
        • 1.1.9 打印模型的摘要
        • 1.1.10 模型编译并训练
      • 1.2 利用Functional API编写多输入神经网络模型进行手写数字识别
        • 1.2.1 分割子集
        • 1.2.2 定义输入层
        • 1.2.3 定义全连接层
        • 1.2.4 创建模型
        • 1.2.5 编译与训练模型
        • 1.2.6 训练历史数据的可视化
    • 2. SubClassing API 搭建神经网络模型
      • 2.1 前馈全连接神经网络手写数字识别
        • 2.1.1 定义一个Keras模型类
        • 2.1.2 定义方法
        • 2.1.3 初始化模型
        • 2.1.4 通过在初始化中传递参数改变模型元素默认值
        • 2.1.5 编译与训练模型
        • 2.1.6 打印模型摘要

加宽前馈全连接神经网络

1. Functional API 搭建神经网络模型

1.1 利用Functional API编写宽深神经网络模型进行手写数字识别

1.1.1 导入需要的库

利用Sequential API建立一个顺序传播的前馈全连接神经网络,导入numpy、pandas,tensorflow等库,以及导入matplotlib的pyplot模块。从sklearn库的datasets模块中导入load_iris函数,以及从sklearn库的model_selection模块中导入train_test_split函数。从TensorFlow库中导入Keras模块。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow import keras
1.1.2 加载虹膜(Iris)数据集

虹膜(Iris)数据集是scikit-learn库中内置的一个样本数据集,它包含了150个样本,分为三个类,每个类有50个样本。这三个类分别是山鸢尾(Iris Setosa)、杂色鸢尾(Iris Versicolour)和维吉尼亚鸢尾(Iris Virginica)。

iris = load_iris()
1.1.3 分割训练集和测试集

将虹膜(Iris)数据集分割为训练集和测试集,得到训练集x_train和y_train,再将分割得到的训练集x_train和y_train分割为新的训练集和验证集。

x_train,x_test,y_train,y_test=train_test_split(iris.data,iris.target, test_size=0.2, random_state=23)
X_train, X_valid, y_train, y_valid=train_test_split(x_train, y_train,test_size=0.2, random_state=12)
1.1.4 定义模型输入层

使用X_train.shape[1:]作为输入层的形状,因为X_train.shape[0]是批量大小,通常在训练过程中改变,而X_train.shape[1:]包含了特征的数量,这些数量在训练过程中保持不变。

inputs = keras.layers.Input(shape=X_train.shape[1:])
1.1.5 添加隐藏层

隐藏层,包含神经元,并使用ReLU激活函数。

hidden1 = keras.layers.Dense(300, activation="relu")(inputs)
hidden2 = keras.layers.Dense(100, activation="relu")(hidden1)
1.1.6 拼接输入层和第二个隐藏层

将输入层和第二个隐藏层的输出进行拼接,得到一个融合了输入和中间层信息的特征向量。

concat = keras.layers.concatenate([inputs, hidden2])
1.1.7 添加输出层

添加了一个输出层,包含10个神经元,使用softmax激活函数,因为模型是用于多类分类任务。

output = keras.layers.Dense(10, activation="softmax")(concat)
1.1.8 创建模型

创建了一个完整的模型,将输入层和输出层连接起来,形成了一个有监督学习的模型结构。
这个模型结构结合了“宽”模型(wide model)和“深”模型(deep model)的特点,通过输入层和隐藏层的拼接来融合这两种模型。

model_fun_WideDeep = keras.models.Model(inputs=[inputs], outputs=[output])

运行结果:
在这里插入图片描述

1.1.9 打印模型的摘要
model_fun_WideDeep.summary()
1.1.10 模型编译并训练

model_fun_WideDeep.fit()方法将开始模型的训练过程,并在每个轮次结束后使用验证数据评估模型的性能。训练过程中,模型将逐渐学习如何将输入特征映射到正确的输出类别。

model_fun_WideDeep.compile(loss="sparse_categorical_crossentropy",optimizer="sgd",metrics=["accuracy"])
h=model_fun_WideDeep.fit(X_train, y_train, batch_size=32, epochs=30, validation_data=(X_valid, y_valid))

运行结果:
在这里插入图片描述

1.2 利用Functional API编写多输入神经网络模型进行手写数字识别

1.2.1 分割子集

将训练集X_train和验证集X_valid分割为两个子集。

X_train_A, X_train_B = X_train[:, :200], X_train[:, 100:]
X_valid_A, X_valid_B = X_valid[:, :200], X_valid[:, 100:]
1.2.2 定义输入层
input_A = keras.layers.Input(shape=X_train_A.shape[1])
input_B = keras.layers.Input(shape=X_train_B.shape[1])
1.2.3 定义全连接层
hidden1 = keras.layers.Dense(300, activation="relu")(input_B)
hidden2 = keras.layers.Dense(100, activation="relu")(hiddenl)
1.2.4 创建模型

将输入层和输出层连接起来。

model_fun_MulIn = keras.models.Model(inputs=[input_A, input_B], outputs=[output])
1.2.5 编译与训练模型

在训练过程中,模型将使用指定的损失函数和优化器来更新权重,并使用准确率作为评估指标来监控性能。

model_fun_MulIn.compile(loss="sparse_categorical_crossentropy",optimizer="sgd",metrics=["accuracy"])

运行结果:
在这里插入图片描述

1.2.6 训练历史数据的可视化

图中显示了训练和验证集上的损失和准确率随轮次的变化情况。

pd.DataFrame(h.history).plot(figsize=(8,5))
plt.grid(True)
plt.gca().set_ylim(0,1)
plt.show()

运行结果:
在这里插入图片描述

2. SubClassing API 搭建神经网络模型

2.1 前馈全连接神经网络手写数字识别

2.1.1 定义一个Keras模型类

定义一个自定义的Keras模型类Model_sub_fnn,继承自keras.models.Model。这个类定义了一个简单的全连接神经网络,它有两个隐藏层和一个输出层。

class Model_sub_fnn(keras.models.Model):def __init__(self, units_1=300, units_2=100, units_out=10, activation='relu'):super().__init__()self.hidden1 = keras.layers.Dense(units_1, activation=activation)self.hidden2 = keras.layers.Dense(units_2, activation=activation)self.main_output = keras.layers.Dense(units_out, activation='softmax')
2.1.2 定义方法

给Model_sub_fnn类定义一个call方法。这个方法是Keras模型中的一个特殊方法,它定义了模型的前向传播过程,它将输入数据通过模型的所有层,并返回最终的输出。

def call(self, data):hidden1 = self.hidden1(data)hidden2 = self.hidden2(hidden1)main_output = self.main_output(hidden2)return main_output
2.1.3 初始化模型
model_sub_fnn = Model_sub_fnn()
2.1.4 通过在初始化中传递参数改变模型元素默认值
model_sub_fnn2 = Model_sub_fnn(300, 100, 10, activation='relu')
2.1.5 编译与训练模型

编译模型,使用训练数据和验证数据进行训练。在训练过程中,模型将使用指定的损失函数和优化器来更新权重,并使用准确率作为评估指标来监控性能。训练完成后,将得到模型的摘要,其中包含了模型的详细信息。

model_sub_fnn.compile(loss='sparse_categorical_crossentropy',optimizer='sgd',metrics=["accuracy")
h= model_sub_fnn.fit(X_train,y_train,batch_size=32,epochs=30,validation_data = (X_valid,y_valid))

运行结果:
在这里插入图片描述

2.1.6 打印模型摘要

打印出模型的摘要,其中包括模型的层结构、每个层的输出形状、层的参数数量以及整个模型的总参数数量。

model_sub_fnn.summary()

运行结果:
在这里插入图片描述

这篇关于深度学习技术之加宽前馈全连接神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/986185

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Java中的Schema校验技术与实践示例详解

《Java中的Schema校验技术与实践示例详解》本主题详细介绍了在Java环境下进行XMLSchema和JSONSchema校验的方法,包括使用JAXP、JAXB以及专门的JSON校验库等技术,本文... 目录1. XML和jsON的Schema校验概念1.1 XML和JSON校验的必要性1.2 Sche

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶