26版SPSS操作教程(高级教程第二十章)

2024-05-13 12:52

本文主要是介绍26版SPSS操作教程(高级教程第二十章),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

粉丝及官方意见说明

第二十章一些学习笔记  

第二十章一些操作方法

神经网络与支持向量机

人工神经网络(artificial neural network,ANN)

假设数据

具体操作

结果解释

对案例的进一步分析

结果解释

​编辑

尝试将模型复杂化

结果解释

纳入更多候选自变量

结果解释

径向基神经网络

结束语 


前言

#一起加油

#本期内容:神经网络与支持向量机

#由于导师最近布置了学习SPSS这款软件的任务,因此想来平台和大家一起交流下学习经验,这期推送内容接上一次高级教程第十九章的学习笔记,希望能得到一些指正和帮助~

粉丝及官方意见说明

#针对官方爸爸的意见说的推送缺乏操作过程的数据案例文件澄清如下:1、操作演示的数据全部由我本人随意假设输进去的,重在演示操作;2、本人也只是在学习阶段,希望友友们能谅解哈,手里有数据的宝子当然更好啦,没有咱就自己假设数据练习一下也没多大关系的哈;3、我也会在后续教程中尽量增加一些数据的必要性说明;4、大家有什么好的意见也可以在评论区一起交流吖~

第二十章一些学习笔记  

  1. SPSS中人工神经网络的结构可以划分为:1、输入层【每个节点对应各预测变量,相当于自变量向量】;2、输出层【节点对应目标变量,可以有多个,相当于因变量的预测结果】;3、隐含层【一般不可见,该层的层数和每层节点的个数决定了神经网络的复杂度,相当于所采用的统计模型】。神经网络不可缺少的两个过程是学习【训练神经网络】和执行【通过训练好的神经网络识别有关信息模式或特征】,反向传输神经网络(back propagation,BP)就是一个典型的例子。神经网络的优点:最大的优势就是训练完之后,就能够迅速得到同类复杂预测问题的预测结果。--统计分析高级教程(第三版)P394-395
  2. SPSS中神经网络使用的注意事项:1、人工神经网络的可解释性很差;2、数据准备不可少;3、训练过度问题无法解决【由于其无法区分有效信息和噪声信息,因此学习的越充分,噪声信息就会纳入的越多】;4、样本量有要求【样本量过少,模型预测效果会不稳定,外推效率非常低,样本量至少为纳入模型变量数的10倍以上】;5、训练效率不高。--统计分析高级教程(第三版)P396-397
  3. SPSS中支持向量机(support vector machine,SVM)方法,是一种二分类模型,其基本定义为特征空间上间隔最大的线性分类器,期望达到的目标则是根据有限的样本信息在模型复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折中,以获得最好的外推能力,实际应用中特别适合用于分析预测变量字段非常多(如数千个)的数据,最典型的场景就是文本分类,限制超平面取值范围的点被称为支持向量(support vector),利用支持向量的信息,即可确定超平面的取值范围,一般选取径向基核函数作为首选核函数。--统计分析高级教程(第三版)P410-411

第二十章一些操作方法

神经网络与支持向量机

人工神经网络(artificial neural network,ANN)

由大量处理单元(神经元)互相连接组成的大规模、非线性、自适应动力学系统,具有自组织、自适应、自学习的能力。

假设数据

具体操作

结果解释

说明:本来最后还有一个预测的表格的,但由于数据问题,这里无法计算,故最后那个预测的表格也无法展示。

对案例的进一步分析

模型效果的图形观察

结果解释

预测-实测图

模型ROC曲线

累计增益图

提升图(SPSS中的效益图)

尝试将模型复杂化

结果解释

双隐含层模型结构示意图

模型的汇总表格和分类表格

纳入更多候选自变量

一般而言,贸然纳入无关变量实际上只会使模型的预测效果变差,若希望直接纳入所有的候选自变量,只需分别将其选入多层神经网络中“因子”和“协变量”框即可,这里为了演示操作,随机将一些可能相关的变量纳入协变量中。

结果解释

径向基神经网络

局部逼近网络,对于每个训练样本,他只需对少量的权值和阈值进行修正,因而大大加快了训练速度,克服了BP神经网络(全局逼近神经网络)学习速度慢的缺点

这里由于数据原因,可能无法计算网络,操作是没问题的,后续的结果表格的读法也是类似的。

支持向量机(support vector machine,SVM)

SPSS中并无直接的命令实现,后续可以考虑编程来实现。

结束语 

#好啦~,以上就是我SPSS第三十八期学习笔记——高级教程第二十章的学习情况啦~,希望能与大家交流学习经验,共同进步吖~

#也非常感谢大家对我的一路陪伴,宝子们的关注、支持和打赏就是up儿不断更新滴动力,我近期也会坚持学习SPSS,更新相应的学习内容及笔记到平台上,咱们下期高级教程不见不散~

 

这篇关于26版SPSS操作教程(高级教程第二十章)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/985759

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

sysmain服务可以禁用吗? 电脑sysmain服务关闭后的影响与操作指南

《sysmain服务可以禁用吗?电脑sysmain服务关闭后的影响与操作指南》在Windows系统中,SysMain服务(原名Superfetch)作为一个旨在提升系统性能的关键组件,一直备受用户关... 在使用 Windows 系统时,有时候真有点像在「开盲盒」。全新安装系统后的「默认设置」,往往并不尽编

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

Android协程高级用法大全

《Android协程高级用法大全》这篇文章给大家介绍Android协程高级用法大全,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友跟随小编一起学习吧... 目录1️⃣ 协程作用域(CoroutineScope)与生命周期绑定Activity/Fragment 中手