算法设计与分析 例题 绘制Huffman树、循环赛、分治、最短路与动态规划

本文主要是介绍算法设计与分析 例题 绘制Huffman树、循环赛、分治、最短路与动态规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.考虑用哈夫曼算法来找字符a,b,c,d,e,f 的最优编码。这些字符出现在文件中

的频数之比为 20:10:6:4:44:16。要求:

(1)(4 分)简述使用哈夫曼算法构造最优编码的基本步骤;

(2)(5 分)构造对应的哈夫曼树,并据此给出a,b,c,d,e,f 的一种最优编码。

解:1)、哈夫曼算法是构造最优编码树的贪心算法。其基本思想是,首先所

有字符对应n 棵树构成的森林,每棵树只有一个结点,根权为对应字符的频率。然后,重复

下列过程n-1 次:将森林中的根权最小的两棵树进行合并产生一个新树,该新树根的两个子

树分别是参与合并的两棵子树,根权为两个子树根权之和。

2)、根据题中数据构造哈夫曼树如下图所示。

由此可以得出 a,b,c,d,e,f 的一组最优的编码:01,0000,00010,00011, 1,001。

2.

设有n=2k个运动员要进行循环赛,现设计一个满足以下要求的比赛日程表:

每个选手必须与其他n-1名选手比赛各一次;每个选手一天至多只能赛一次;

循环赛要在最短时间内完成.
(1)(4分)循环赛最少需要进行( n-1 )天.

(2)(6分)当n=23=8时,请画出循环赛日程表:

1

2

3

4

5

6

7

8

2

1

4

3

6

5

8

7

3

4

1

2

7

8

5

6

4

3

2

1

8

7

6

5

5

6

7

8

1

2

3

4

6

5

8

7

2

1

4

3

7

8

5

6

3

4

1

2

8

7

6

5

4

3

2

1

3.

 请用分治策略设计递归的归并排序算法,并分析其时间复杂性(要求:分别给出divide、conquer、combine这三个阶段所花的时间,并在此基础上列出递归方程,最后用套用公式法求出其解的渐进阶)。

答 : Template <class Type>

void MergeSort (Type a[ ], int left, int right)     

{ if (left<right)                            

           { int i=left+right/2;               

            MergeSorta, left, i;               

            MergeSorta, i+1, right;            

            Merge(a, b, left, right);               

            Copy(a, b, left, right);                 

           }

 }

     Divide 阶段的时间复杂性:    O(1)          

     Conquer阶段的时间复杂性:   2T(n)          

     Combine阶段的时间复杂性:  Θ(n)          

                                               

    用套用公式法:a=2, b=2, nlog ba = n , f(n)=n,   因为f(n)与nlog ba 同阶,

   T(n) =Θ(nlogn)  

     4.

对下图所示的连通网络G,用克鲁斯卡尔(Kruskal)算法求G的最小生成树T,请写出在算法执行过程中,依次加入T的边集TE中的边。说明该算法的贪心策略和算法的基本思想,并简要分析算法的时间复杂度。

TE={(3,4), (2,3),(1,5),(4,6)(4,5)}   

贪心策略是每次都在连接两个不同连通分量的边中选权值最小的边。

基本思想:首先将图中所有顶点都放到生成树中,然后每次都在连接两个不同连通分量的边中选权值最小的边,将其放入生成树中,直到生成树中有n-1条边。

时间复杂度为:O(eloge)  

 5.

用动态规划策略求解最长公共子序列问题:

   (1)给出计算最优值的递归方程。

   (2)给定两个序列X={B,C,D,A},Y={A,B,C,B},请采用动态规划策略求出其最长公共子序列,要求给出过程。

(1)

                                        

                                        

                                       

                                          

这篇关于算法设计与分析 例题 绘制Huffman树、循环赛、分治、最短路与动态规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984518

相关文章

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方