【RAG 论文】FiD:一种将 retrieved docs 合并输入给 LM 的方法

2024-05-13 03:04

本文主要是介绍【RAG 论文】FiD:一种将 retrieved docs 合并输入给 LM 的方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文: Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering

⭐⭐⭐⭐

EACL 2021, Facebook AI Research

论文速读

在 RAG 中,如何将检索出的 passages 做聚合并输入到生成模型是一个问题,本文提出了一个简单有效的方案:FiD。

下图是一个简单的 open-domain QA 的使用方式,它直接将 question 和检索到的所有 passages 拼接起来,以 <question, retrieved passages> 的形式扔给 seq2seq 模型来生成 answer:

20240512210853

这种处理方式中,随着 retrieved passages 的数量增多,由于 Self-Attention 的运算机制,计算复杂度会呈现二次增长。

本论文提出了一个简单直接的方法 —— FiDFusion-in-Decoder)—— 将检索回来的每一个 passage 都独立与 question 用一些特殊符号作为间隔拼接起来并输给 encoder 做编码,然后 concat 在一起输入给 decoder 生成 final answer,所以称之为 Fusion-in-Decoder:

20240512211400

尽管方法简单,但效果却出奇的好,在当时 TriviaQA 和 NaturalQuestions 的 benchmark 上达到了 SOTA 水平:

While conceptually simple, this method sets new state-of-the-art results on the TriviaQA and NaturalQuestions benchmarks.

同时,作者认为,与检索模型相比,生成模型非常善于将多个 passages 的信息进行合成,所以本工作的 retrieved passages 的合成工作是交给了生成模型的 Decoder 来做的

We believe that this is evidence that generative mod els are good at combining evidence from multiple passages, compared to extractive ones.

实验结果

与其他 baselines 的对比:

20240512211933

作者还测试了一下 FiD 在 valid set 上的 performance 与 retrieved passages 数量的函数关系:

20240512212100

可以看到,随着输入的 passages 越多,模型的性能就越好,但同时由于拼接后给 decoder 的输入变长,肯定会伴随着计算机内存的增长。

总结

FiD 给出了一种将 retrieved passages 如何聚合输入给生成模型的思路,这种方法相比于传统的全部拼接再给 LLM 的优势在于:

  • encoder 独立处理每个 passage,因此只需要在一个 passage 上执行 self-attention,这意味着模型的计算时间随着段落数量呈线性增长,而非二次增长。
  • 由 decoder 来联合聚合多个 retrieved passages,可以更好的从中找到相关支持信息。

论文最后指出,如何将 FiD 更好集成到 RAG 模型仍然值得探索。

这篇关于【RAG 论文】FiD:一种将 retrieved docs 合并输入给 LM 的方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984506

相关文章

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

Java中Arrays类和Collections类常用方法示例详解

《Java中Arrays类和Collections类常用方法示例详解》本文总结了Java中Arrays和Collections类的常用方法,涵盖数组填充、排序、搜索、复制、列表转换等操作,帮助开发者高... 目录Arrays.fill()相关用法Arrays.toString()Arrays.sort()A

Nginx安全防护的多种方法

《Nginx安全防护的多种方法》在生产环境中,需要隐藏Nginx的版本号,以避免泄漏Nginx的版本,使攻击者不能针对特定版本进行攻击,下面就来介绍一下Nginx安全防护的方法,感兴趣的可以了解一下... 目录核心安全配置1.编译安装 Nginx2.隐藏版本号3.限制危险请求方法4.请求限制(CC攻击防御)