最短路径算法 dijkstra bellman-ford floyd

2024-05-13 02:38

本文主要是介绍最短路径算法 dijkstra bellman-ford floyd,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Dijkstra算法:

1.定义概览

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。

问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)

 

2.算法描述

1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

2)算法步骤:

a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。

b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

3)算法原理:

算法原理可以用非常简单的反证法进行证明:若点p -> q 存在最短路径为p->a->q,则p到a的最短路径必定为p->a。若存在更短的路径p->b->a,则p到q的最短路径则为p->b->a->q,与题设矛盾。故可以得出以下这个结论,最短路径上处处都是最短路径。所以可以证明迪杰斯特拉算法是正确的。

4)算法适合范围:

算法仅适合求正权上的最短路径,也可以进行一些变型计算,不过尚未能证明,但是过了oj。例如:POJ2253-Frogger

5)算法实现

const int  MAXINT = 32767;
const int MAXNUM = 10;
int dist[MAXNUM];
int prev[MAXNUM];int A[MAXUNM][MAXNUM];void Dijkstra(int v0)
{bool S[MAXNUM];                                  // 判断是否已存入该点到S集合中int n=MAXNUM;for(int i=1; i<=n; ++i){dist[i] = A[v0][i];S[i] = false;                                // 初始都未用过该点if(dist[i] == MAXINT)    prev[i] = -1;else prev[i] = v0;}dist[v0] = 0;S[v0] = true;   for(int i=2; i<=n; i++){int mindist = MAXINT;int u = v0;                               // 找出当前未使用的点j的dist[j]最小值for(int j=1; j<=n; ++j)if((!S[j]) && dist[j]<mindist){u = j;                             // u保存当前邻接点中距离最小的点的号码 mindist = dist[j];}S[u] = true; for(int j=1; j<=n; j++)if((!S[j]) && A[u][j]<MAXINT){if(dist[u] + A[u][j] < dist[j])     //在通过新加入的u点路径找到离v0点更短的路径  {dist[j] = dist[u] + A[u][j];    //更新dist prev[j] = u;                    //记录前驱顶点 }}}
}

bellman-ford算法:

1.定义概览

Bellman-ford算法是求含负权图的单源最短路径算法,效率很低,但代码很容易写。即进行持续地松弛(原文是这么写的,为什么要叫松弛,争议很大),每次松弛把每条边都更新一下,若n-1次松弛后还能更新,则说明图中有负环,无法得出结果,否则就成功完成。

2.算法描述

1)算法思想

Bellman-Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题。对于给定的带权(有向或无向)图 G=(V,E),其源点为s,加权函数 w是 边集 E 的映射。对图G运行Bellman-Ford算法的结果是一个布尔值,表明图中是否存在着一个从源点s可达的负权回路。若不存在这样的回路,算法将给出从源点s到 图G的任意顶点v的最短路径d[v]。

2)算法步骤

a.初始化:将除源点外的所有顶点的最短距离估计值 d[v] ←+∞, d[s] ←0;

b.迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)

c.检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 d[v]中。

Tips:解释一下松弛操作是什么意思,松弛操作就是指不断迭代比较某点到某点的权或者称为代价,若点a的权为d[a],点 b的权为d[b], 从a->b的权值为 w[a][b] ,若 d[a]+ w[a][b]<d[b] ,则 d[b]=d[a]+ w[a][b] 。 这个不断更新迭代的过程就叫做松弛。其实本人觉得叫紧绷也无不可。

3)算法原理

这个算法原理就比较抽象:可以想象成拥有层级关系的叶子。第一次遍历是从源点出发,找出只通过1个点的最短路径,相当于是第一层,第二次遍历是找出只通过2个点的最短路径,相当于是第二层。最终,找出通过n个点的最短路径。一层找到一个最短路径,和一个点,所以要循环n-1次。而且每次遍历每一条边。

4)算法适合范围

算法特别适合找出图中的负环这一个特性,代表题目有:poj1860、poj3259。 这是属于算法的专有特性。不要忘记咯。

5)算法实现

#include<iostream>#include<cstdio>using namespace std;#define MAX 0x3f3f3f3f#define N 1010int nodenum, edgenum, original; //点,边,起点typedef struct Edge //边
{int u, v;int cost;
}Edge;Edge edge[N];
int dis[N], pre[N];bool Bellman_Ford()
{for(int i = 1; i <= nodenum; ++i) //初始化dis[i] = (i == original ? 0 : MAX);for(int i = 1; i <= nodenum - 1; ++i)for(int j = 1; j <= edgenum; ++j)if(dis[edge[j].v] > dis[edge[j].u] + edge[j].cost) //松弛(顺序一定不能反~){dis[edge[j].v] = dis[edge[j].u] + edge[j].cost;pre[edge[j].v] = edge[j].u;}bool flag = 1; //判断是否含有负权回路for(int i = 1; i <= edgenum; ++i)if(dis[edge[i].v] > dis[edge[i].u] + edge[i].cost){flag = 0;break;}return flag;
}void print_path(int root) //打印最短路的路径(反向)
{while(root != pre[root]) //前驱{printf("%d-->", root);root = pre[root];}if(root == pre[root])printf("%d\n", root);
}int main()
{scanf("%d%d%d", &nodenum, &edgenum, &original);pre[original] = original;for(int i = 1; i <= edgenum; ++i){scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].cost);}if(Bellman_Ford())for(int i = 1; i <= nodenum; ++i) //每个点最短路{printf("%d\n", dis[i]);printf("Path:");print_path(i);}elseprintf("have negative circle\n");return 0;
}

Floyd算法:

1)算法思想原理

Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)

从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

2).算法描述

a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。   

b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。

3)算法证明

个人感觉这个算法就像是Bellman-Ford算法的升级版,只不过从单源变成了可以求多源,双层循环变成了三层循环。可以看成是,对于每一个节点,都不断遍历成对节点的所有可能性,有没有可能从这个节点是中间节点的情况会更近呢,有点话就更新,没有就拉倒,你从那里到这里就可以不从这里过。

4)算法适合范围

这个算法适合利用这种拆分思想,例如完美实现了这一拆分思想的POJ2253-Frogger,利用多源点思想的poj2240。

5)算法实现

typedef struct          
{        char vertex[VertexNum];                                //顶点表         int edges[VertexNum][VertexNum];                       //邻接矩阵,可看做边表         int n,e;                                               //图中当前的顶点数和边数         
}MGraph; void Floyd(MGraph g)
{int A[MAXV][MAXV];int path[MAXV][MAXV];int i,j,k,n=g.n;for(i=0;i<n;i++)for(j=0;j<n;j++){   A[i][j]=g.edges[i][j];path[i][j]=-1;}for(k=0;k<n;k++){ for(i=0;i<n;i++)for(j=0;j<n;j++)if(A[i][j]>(A[i][k]+A[k][j])){A[i][j]=A[i][k]+A[k][j];path[i][j]=k;} } 
}









这篇关于最短路径算法 dijkstra bellman-ford floyd的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984459

相关文章

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

VSCode设置python SDK路径的实现步骤

《VSCode设置pythonSDK路径的实现步骤》本文主要介绍了VSCode设置pythonSDK路径的实现步骤,包括命令面板切换、settings.json配置、环境变量及虚拟环境处理,具有一定... 目录一、通过命令面板快速切换(推荐方法)二、通过 settings.json 配置(项目级/全局)三、

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)

《如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)》:本文主要介绍如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)问题,具有很好的参考价值,希望对大家有所帮助,如有... 目录先在你打算存放的地方建四个文件夹更改这四个路径就可以修改默认虚拟内存分页js文件的位置接下来从高级-

一文详解如何查看本地MySQL的安装路径

《一文详解如何查看本地MySQL的安装路径》本地安装MySQL对于初学者或者开发人员来说是一项基础技能,但在安装过程中可能会遇到各种问题,:本文主要介绍如何查看本地MySQL安装路径的相关资料,需... 目录1. 如何查看本地mysql的安装路径1.1. 方法1:通过查询本地服务1.2. 方法2:通过MyS

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Python如何调用指定路径的模块

《Python如何调用指定路径的模块》要在Python中调用指定路径的模块,可以使用sys.path.append,importlib.util.spec_from_file_location和exe... 目录一、sys.path.append() 方法1. 方法简介2. 使用示例3. 注意事项二、imp

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各