C++和Python通信引文道路社评电商大规模行为图结构数据模型

本文主要是介绍C++和Python通信引文道路社评电商大规模行为图结构数据模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 🎯图论数学逻辑和计算:🖊定向网络节点和边 | 🖊节点的入度 | 🖊出度和度 | 🖊源节点 | 🖊汇节点 | 🖊 孤立节点 | 🖊入度分布和出度分布 | 🖊平均度 | 🖊平均入读和平均出度 | 🖊随机节点距离 | 🖊最短路径长度分布 | 🖊节点聚类系数及分布和平均聚类系数。
  2. 🎯图结构和算法:🖊计算入度和出度分布并绘制每个分布的幂律 | 🖊广度优先搜索算法遍历节点 | 🖊绘制算法遍历节点的累积分布 | 🖊创建前向后向度优先搜索算法图 | 🖊计算出入分量的节点 | 🖊计算两节点存在的路径的概率 | 🖊计算两网络弱连通分量算法下,连接的节点对概率。
  3. 🎯图模型和概率:🖊生成埃尔多什-雷尼随机图 | 🖊生成配置模型随机图 | 🖊计算上述图度分布 | 🖊计算最短路径长度分布 | 🖊聚类系数分布 | 🖊弱连通分量算法大小分布。
  4. 🎯小世界图 | 🎯社交软件图结构 | 🎯点评网络 | 🎯影响力

🍇Python图节点和度

a
b
d
e
c
f

数学和计算机科学中的“图” 由“节点”(也称为“顶点”)组成。节点之间可能连接也可能不连接。

节点“a”与节点“c”连接,但“a”不与“b”连接。 两个节点之间的连接线称为边。 如果节点之间的边是无向的,则该图称为无向图。 如果一条边从一个顶点(节点)指向另一个顶点(节点),则图称为有向图。 有向边称为弧。 尽管图表看起来非常理论化,但许多实际问题都可以用图表来表示。 它们通常用于对物理、生物学、心理学,尤其是计算机科学中的问题或情况进行建模。 在计算机科学中,图用于表示通信网络、数据组织、计算设备、计算流程、在后一种情况下,它们用于表示数据组织,例如操作系统的文件系统或通信网络。 网站的链接结构也可以看作是图,即有向图,因为链接是有向边或弧。 Python 没有内置的图形数据类型或类,但在 Python 中很容易实现它们。 一种数据类型非常适合在 Python 中表示图形,即字典。 我们图中的图表可以通过以下方式实现:

graph = { "a" : {"c"},"b" : {"c", "e"},"c" : {"a", "b", "d", "e"},"d" : {"c"},"e" : {"c", "b"},"f" : {}}

上面字典的键是我们图的节点。 相应的值是用节点设置的,节点通过边连接。 集合比列表或元组更好,因为这样,两个节点之间只能有一条边。 没有比这更简单、更优雅的方式来表示图表了。边也可以理想地实现为具有两个元素(即端节点)的集合。这对于无向图来说是理想的。对于有向图,我们更喜欢使用列表或元组来实现边。

生成所有边列表的函数:

def generate_edges(graph):edges = []for node in graph:for neighbour in graph[node]:edges.append({node, neighbour})return edgesprint(generate_edges(graph))

输出:

[{'c', 'a'}, {'c', 'b'}, {'b', 'e'}, {'c', 'd'}, {'c', 'b'}, {'c', 'e'}, {'c', 'a'}, {'c', 'd'}, {'c', 'e'}, {'b', 'e'}]

正如我们所看到的,没有包含节点“f”的边。 “f”是我们图中的一个孤立节点。以下 Python 函数计算给定图的孤立节点:

def find_isolated_nodes(graph):isolated = set()for node in graph:if not graph[node]:isolated.add(node)return isolated
a
d
c
b
e
f

如果您查看我们类的以下清单,您可以在 init 方法中看到我们使用字典“self._graph_dict”来存储顶点及其相应的相邻顶点。

class Graph(object):def __init__(self, graph_dict=None):if graph_dict == None:graph_dict = {}self._graph_dict = graph_dictdef edges(self, vertice):return self._graph_dict[vertice]def all_vertices(self):return set(self._graph_dict.keys())def all_edges(self):return self.__generate_edges()def add_vertex(self, vertex):if vertex not in self._graph_dict:self._graph_dict[vertex] = []def add_edge(self, edge):edge = set(edge)vertex1, vertex2 = tuple(edge)for x, y in [(vertex1, vertex2), (vertex2, vertex1)]:if x in self._graph_dict:self._graph_dict[x].add(y)else:self._graph_dict[x] = [y]def __generate_edges(self):edges = []for vertex in self._graph_dict:for neighbour in self._graph_dict[vertex]:if {neighbour, vertex} not in edges:edges.append({vertex, neighbour})return edgesdef __iter__(self):self._iter_obj = iter(self._graph_dict)return self._iter_objdef __next__(self):return next(self._iter_obj)def __str__(self):res = "vertices: "for k in self._graph_dict:res += str(k) + " "res += "\nedges: "for edge in self.__generate_edges():res += str(edge) + " "return res

我们想玩一下我们的图表。我们从迭代图表开始。迭代意味着迭代顶点。

g = { "a" : {"d"},"b" : {"c"},"c" : {"b", "c", "d", "e"},"d" : {"a", "c"},"e" : {"c"},"f" : {}}graph = Graph(g)for vertice in graph:print(f"Edges of vertice {vertice}: ", graph.edges(vertice))

输出:

Edges of vertice a:  {'d'}
Edges of vertice b:  {'c'}
Edges of vertice c:  {'c', 'd', 'b', 'e'}
Edges of vertice d:  {'c', 'a'}
Edges of vertice e:  {'c'}
Edges of vertice f:  {}

参阅一:计算思维

参阅二:亚图跨际

这篇关于C++和Python通信引文道路社评电商大规模行为图结构数据模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/983922

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装