车道线检测霍夫直线检测原理分析

2024-05-12 18:38

本文主要是介绍车道线检测霍夫直线检测原理分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://blog.csdn.net/happy_stars_2016/article/details/52691255

一、车道线检测步骤


1、灰度化

灰度化关键函数: cvCvtColorcvCvtColor(IplImage* src, IplImage* dst, CV_BRG2GRAY);
最后一个参数为 CV_BRG2GRAY ,表示将BRG图片(彩色图片)转换为灰度图片(黑白)。


2、二值化

图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果。

即将256个亮度等级的灰度图像通过适当的阈值选取而获得仍然可以反映图像整体和局部特征的二值化图像。
cvThreshold( dst, dst,threshold ,max_value, threshold_type);是手动指定一个阈值,以此阈值来进行二值化处理。
src:原始数组(单通道 , 8-bit of 32-bit 浮点数)。
dst:输出数组,必须与 src 的类型一致,或者为 8-bit。
threshold:阈值
max_value:使用 CV_THRESH_BINARY 和 CV_THRESH_BINARY_INV 的最大值。
threshold_type:阈值类型
threshold_type=CV_THRESH_BINARY:如果 src(x,y)>threshold ,dst(x,y) = max_value; 否则,dst(x,y)=0;
threshold_type=CV_THRESH_BINARY_INV:如果 src(x,y)>threshold,dst(x,y) = 0; 否则,dst(x,y) = max_value.

threshold_type可以使用CV_THRESH_OTSU类型,这样该函数就会使用大律法OTSU得到的全局自适应阈值来进行二值化图片,而参数中的threshold不再起作用。


3、canny边缘检测

Canny算子求边缘点具体算法步骤如下:
1. 用高斯滤波器平滑图像
2. 用一阶偏导有限差分计算梯度幅值和方向
3. 对梯度幅值进行非极大值抑制 
4. 用双阈值算法检测和连接边缘
void cvCanny( const CvArr* image, CvArr* edges, double threshold1, double threshold2, int aperture_size=3 );
image单通道输入图像
edges单通道存储边缘的输出图像
threshold1第一个阈值
threshold2第二个阈值
aperture_size 是表示Sobel 算子内核大小
threshold1和threshold2 当中的小阈值用来控制边缘连接,大的阈值用来控制强边缘的初始分割。


4、霍夫直线检测

霍夫变换是一种在图像中寻找直线,圆及其他简单形状的方法。 opencv支持两种不同的霍夫变换:标准霍夫变换(SHT)和累积概率霍夫变换(PPHT)。

在opencv中可以使用同一个函数来使用两种算法。
CvSeq* cvHonghLines2(CvArr* image,  void* line_storage,int mehtod, double rho, double theta, int threshold,  double param1 =0, double param2 =0 );

 image   输入 8-比特、单通道 (二值) 图像

 line_storage  存储检测到的线段,可以是序列或者单行/单列矩阵

 mehtod     Hough 变换变量 rho     与象素相关单位的距离精度theta  弧度测量的角度精度

threshold  阈值参数。如果相应的累计值大于 threshold, 则函数返回的这个线段 
Param1:对传统 Hough 变换,不使用(0);对概率 Hough 变换,它是最小线段长度.
Param2:对传统 Hough 变换,不使用 (0);对概率 Hough 变换,这个参数表示在同一条直线上进行碎线段连接的最大间隔值(gap), 即当同一条直线上的两条碎线段之间的间隔小于param2时,将其合二为一。

二、霍夫直线检测原理

Hough变换在计算机视觉、军事防御、办公自动化等领域都得到了普遍的关注和广泛的应用。其基本思想是将原图像变换到参数空间,

用大多数边界点满足某种参数形式来描述图像中的线,通过设置累加器进行累积,求得峰值对应的点所需要的信息。

Hough变换以其对局部缺损的不敏感,对随机噪声的鲁棒性以及适于并行处理等优良特性,备受图像处理、模式识别和计算机视觉领域学者的青睐。
Hough变换的突出优点就是可以将图像中较为困难的全局检测问题转换为参数空间中相对容易解决的局部峰值检测问题。
1962 年,Paul Hough根据数学对偶性原理提出了检测图像直线的方法,此后该方法被不断地研究和发展,主要应用于模式识别领域中对二值图像进行直线检测。

1、Hough变换原理

a.在图像中检测直线的问题,其实质是找到构成直线的所有的像素点。那么问题就是从找到直线,变成找到符合y=kx+b的所有(x,y)的点的问题。
b.进行坐标系变化y=kx+b,变成b=-xk+y。这样表示为过点(k,b)的直线束。
c.x-y空间的直线上每一个点在k-b坐标系中都表现为经过(k,b)的直线。找到所有点的问题,转变为寻找直线的问题。
d.对于图像中的每一个点,在k-b坐标系中对应着很多的直线。找到直线的交点,就对应着找到图像中的直线。


目前,opencv霍夫检测直线常用的方法是,是将平面中任一条直线用极坐标方式表示:ρ=xcosθ+ysinθ ,

其中p表示直角坐标系中原点到直线的距离,θ表示x轴与p的夹角这样,图像平面上的一个点就对应到ρ-θ平面上的一条曲线上。

如果对位于同一直线上的n个点进行变换,原图像空间的n个点在参数空间对应得到有n条正弦曲线,并且这些曲线相交于一点。


2、Hough检测步骤

Hough变换在算法设计上就可以如下步骤:
a.在ρ,θ合适的最大值与最小值之间建立一个离散的参数空间,如下图1-1。 
b.将参数空间(ρ,θ) 量化成m*n(m为ρ的等份数,n为θ的等份数)个单元,并设置累加器矩阵,如下图。
c.给参数空间的每一个单元分配一个累加器Q(i,j),并把累加器的初始值设置为0
d.对图像边界上的每一个点(x,y)带入ρ=xcosθ+ysinθ,求得每个θ对应的ρ值
e.在参数空间中,找到ρ和θ所对应的单元,并将该单元的累加器加1,即:Q(i,j)=Q(i,j)+1。
f.当直角坐标系中的所有点都经过4和5两步遍历后,检验参数空间中每个累加器的值,累加器最大的单元所对应的ρ和θ即为直角坐标系中直线方程的参数。

注意:当直角坐标系中的点分布在 R 条直线附近时,可在第 5 步检测累加器时,取出累加器中前 R 个值最大的单元所对应的ρk和θk(k=1,2,…,R ),

以ρk和θk为直角坐标系中直线方程式ρ=xcosθ+ysinθ的参数,即可同时实现多条直线的检测。

3、总结

由上所述,Hough 变换的基本策略是:用图像空间的边缘数据点计
算参数空间中的参考点的可能轨迹,并在一个累加器中给计算出参考点的计数,最后选出峰值。该峰值表明在图像空间上有一共线点较多的直线,

该直线的参数由累加器的ρ和θ决定,即按照 Q(i,j)=Q (i,j)+1确定,则图像空间中满足该式的点(x,y)就组成了该直线。


这篇关于车道线检测霍夫直线检测原理分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/983420

相关文章

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499