Python 全栈系列243 S2S flask_celery

2024-05-12 11:04

本文主要是介绍Python 全栈系列243 S2S flask_celery,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说明

按现有的几个架构部件,构建数据流。

S = Redis Stream。这个可以作为缓冲队列和简单任务队列,速度非常快,至少是万条/秒的速度。
Q = RabbitMQ。这个作为任务队列,消息也主要是元数据。读速比较慢,但有一些特性,然后自带前端,作为任务队列比较合适。
M = Mongo。这个作为数据主库还是比较合适的。具有丰富的数据操作模式,同时性能也不错。
C = ClickHouse。这个特别适合作为任务数据库。因为列式存储的特性,其吞吐性能,简单统计功能甚至逼近了程序处理的速度。例如,存储10万条数据,大约也就3秒;统计900万数据某个字段的长度,时间也不到5秒。(过去在处理上,基本上按照100万条/秒来评估默认的程序处理能力)

RabbitMQ和Redis Streams都是流行的队列系统,用于处理消息传递任务,但它们在效率和应用场景上有所不同。
RabbitMQ是基于AMQP(高级消息队列协议)的开源消息代理,它提供了可靠的消息传递机制,能够保证消息的持久性,即使在发送或接收过程中出现故障也不会丢失消息。RabbitMQ适用于需要高可靠性和复杂路由策略的生产环境,特别是在分布式系统中,它能够很好地处理复杂的异步消息传递任务。
另一方面,Redis Streams是Redis 5.0版本引入的新特性,它提供了一个持久化的消息队列系统。Redis Streams的设计理念在于提供高性能的发布/订阅模型,尤其适合于即时消息处理场景。与RabbitMQ相比,Redis Streams在性能上具有优势,因为它利用了Redis本身的高性能特性,使得消息的读写速度非常快。
在效率方面,Redis Streams通常被认为比RabbitMQ更快,特别是在处理大量实时数据流时。这是因为Redis作为一个内存中的键值存储系统,本身就具有很高的读写速度,而Streams作为其一部分,也继承了这种高效性。此外,Redis Streams的无锁设计进一步提升了其性能,使得它在处理并发请求时更加高效。
然而,RabbitMQ在某些情况下可能更适合使用,特别是当需要处理复杂的异步任务、保证消息的顺序性以及实现可靠的消息传递时。RabbitMQ的这些特性使得它在金融、医疗等关键行业中被广泛应用。
总之,在选择RabbitMQ还是Redis Streams时,应考虑到具体的应用场景、性能需求和可靠性要求。如果追求极致的性能和实时性,Redis Streams可能是更好的选择;而如果需要更高的可靠性和复杂的路由功能,RabbitMQ可能更为合适。

本次目标是搭建一个worker,可以通过参数化方式,完成两个S间的流转。除了M和C之前一般不会直接流转,那么应该有 4*3 - 2 = 10 种组件间的流转。

内容

整体的实现逻辑顺序为:

  • 1 使用QManager完成S2S的动作(函数)
  • 2 将函数定义为celery task
  • 3 将flask-celery发布为systemd服务

1 S2S 函数

S2S应该是一种最常见的任务

首先是QManager, 这个是对RedisAgent进行封装和集成的对象,本质上是个二传手。

QManager 集成了:

  • 1 判断队列是否可以写入
  • 2 并行写入
  • 3 fetch和range两种方式取数
  • 4 删除消息
import requests as req 
class QManager:def __init__(self , batch_size = 1000, redis_agent_host = 'http://172.17.0.1:24021/',redis_connection_hash =None,q_max_len = 100000):self.batch_size = batch_sizeself.redis_agent_host = redis_agent_hostself.redis_connection_hash = redis_connection_hashself.q_max_len = q_max_lendef auto_connect(self, db_server_name):print('这里应该根据某个参数值,自动切换为合适的连接')def info(self):return req.post(self.redis_agent_host + 'info/',json = {'connection_hash':self.redis_connection_hash}).json()# redis没有提供命令来列出streams# def qname_list(self, stream_name = '*'):#     return req.post(self.redis_agent_host + 'info_stream/',json = {'stream_name':stream_name}).json()# 查看队列长度def stream_len(self, stream_name):cur_len_resp = req.post(self.redis_agent_host + 'len_of_queue/',json ={'stream_name':stream_name,'connection_hash':self.redis_connection_hash}).json()return cur_len_resp['data']# 创建队列和分组def ensure_group(self, stream_name, group_name ='group1', start_point='0'):return req.post(self.redis_agent_host +'ensure_group/',json ={'stream_name':stream_name,'group_name':group_name,'start_point':start_point}).json()# 判断队列是否可以插入def _is_q_available(self,stream_name):cur_len = self.stream_len(stream_name)if cur_len + self.batch_size >=self.q_max_len:return False else:return True #  基于并发方法,向数据库存数【队列Write相关-写入消息】- 其实是使用pipeline - 最好单次一万左右def parrallel_write_msg(self,stream_name, data_listofdict = None, time_out = 30,is_return_msg_id_list=False):resp_dict = req.post(self.redis_agent_host + 'batch_add_msg/',json ={'connection_hash':self.redis_connection_hash,'stream_name':stream_name,'msg_dict_list':data_listofdict,'maxlen':self.q_max_len,'is_return_msg_id_list':is_return_msg_id_list},timeout=time_out).json()return resp_dict# 读取# 批量获取数据 getdef xrange(self, stream_name, count = None):cur_count = count or self.batch_size recs_resp = req.post(self.redis_agent_host + 'xrange/',json ={'connection_hash':self.redis_connection_hash, 'stream_name':stream_name,'count':cur_count}).json()return recs_resp# 批量获取数据 fetchdef xfetch(self, stream_name, count = None,group_name = 'group1' , consumer_name = 'consumer1'):cur_count = count or self.batch_sizereturn req.post(self.redis_agent_host + 'fetch_msg/',json = {'connection_hash':self.redis_connection_hash,'stream_name':stream_name,'group_name':group_name,'consumer_name':consumer_name,'count':cur_count}).json()# 批量删除消息def xdel(self,stream_name,mid_or_list =None):if len(mid_or_list):return req.post(self.redis_agent_host  + 'del_msg/',json ={'connection_hash':self.redis_connection_hash, 'stream_name':stream_name,'mid_or_list':mid_or_list}).json()@staticmethoddef extract_msg_id(some_msg_list):return [x['_msg_id'] for x in some_msg_list]

基于此,稍微修改就可以完成S2S的任务

按照边的方式,给到left和right的参数信息。使用这些信息分别初始化left和right的QManager。最后按照配置里的约定,执行n次同步。每次执行时,都会看下目标队列是否已满,若已满则放弃写入,否则执行写入,然后删除消息。

# local
cfg = {'target_q_max_len': 10,'source_read_batch_num':1,'target_write_batch_num':1,'source_redis_agent_host':'http://172.17.0.1:24021/','source_connection_hash':None,'target_redis_agent_host':'http://172.17.0.1:24021/','target_connection_hash':None,'source_stream':'.'.join(['STREAM','test','test', 'stream_in']),'target_stream':'.'.join(['STREAM','test','test', 'stream_out'])}# read
source_qm = QManager(batch_size =cfg['source_read_batch_num'],redis_agent_host = cfg['source_redis_agent_host'],redis_connection_hash = cfg['source_connection_hash'])
# write
target_qm = QManager(batch_size =cfg['target_write_batch_num'],redis_agent_host = cfg['target_redis_agent_host'],redis_connection_hash = cfg['target_connection_hash'])# 确保队列的存在
if True:source_qm.ensure_group(cfg['source_stream'])target_qm.ensure_group(cfg['target_stream'])'''
主逻辑:- 1 判断目标队列是否满,如果是,那么直接退出
- 2 从源队列取数(采用xrange方法),如果没有数据,直接退出【每对stream之间,只会有一个 sniffer 】
- 3 将源队列数据写入目标队列
- 4 从源队列中删除这些数据'''print('source q len ', source_qm.stream_len(cfg['source_stream']))
print('target q len ', target_qm.stream_len(cfg['target_stream']))for _ in range(cfg['max_exec_cnt']):if target_qm._is_q_available(cfg['target_stream']):print('target q ok')msg_num_limit = min(cfg['source_read_batch_num'],cfg['target_write_batch_num'])msg_list = source_qm.xrange(cfg['source_stream'], count=msg_num_limit)['data']if len(msg_list) == 0:print('source q empty')breakelse:# 写入目标队列target_qm.parrallel_write_msg(cfg['target_stream'], data_listofdict= msg_list)# 将写入的消息从源队列删除to_del_msg_id_list = source_qm.extract_msg_id(msg_list)source_qm.xdel(cfg['source_stream'], mid_or_list= to_del_msg_id_list)else:break

2 Celery Task

然后将上述功能函数写入Flask-Celery

第一部分是在 celery的修饰器下,将任务函数搬进去。然后在app下定义了任务的调用,主要是用到了delay方法,实现异步调用。

# =======================以下是正式的内容
@celery_.task
def s2s_handler(cfg_dict = None):cfg = cfg_dict# readsource_qm = QManager(batch_size =cfg['source_read_batch_num'],redis_agent_host = cfg['source_redis_agent_host'],redis_connection_hash = cfg['source_connection_hash'])# writetarget_qm = QManager(batch_size =cfg['target_write_batch_num'],redis_agent_host = cfg['target_redis_agent_host'],redis_connection_hash = cfg['target_connection_hash'])print('source q len ', source_qm.stream_len(cfg['source_stream']))print('target q len ', target_qm.stream_len(cfg['target_stream']))for _ in range(cfg['max_exec_cnt']):if target_qm._is_q_available(cfg['target_stream']):print('target q ok')msg_num_limit = min(cfg['source_read_batch_num'],cfg['target_write_batch_num'])msg_list = source_qm.xrange(cfg['source_stream'], count=msg_num_limit)['data']if len(msg_list) == 0:print('source q empty')breakelse:# 写入目标队列target_qm.parrallel_write_msg(cfg['target_stream'], data_listofdict= msg_list)# 将写入的消息从源队列删除to_del_msg_id_list = source_qm.extract_msg_id(msg_list)source_qm.xdel(cfg['source_stream'], mid_or_list= to_del_msg_id_list)else:break# 执行任务的路由 POST
@app.route("/s2s/", methods=['GET','POST'] )
def s2s():input_data = request.get_json()# 发送任务到celery,并返回任务ID,后续可以根据此任务ID获取任务结果result = s2s_handler.delay(input_data)return result.id

调用测试,存入一万条消息(之前还有70条残留),任务执行后,source_q中的数据将会逐渐流转到target_q

# debug - 样例数据写入源队列
data_listofdict = [{'msg_id': i, 'data':'test'} for i in range(10000)]
source_qm.parrallel_write_msg(cfg['source_stream'], data_listofdict= data_listofdict)print('source q len ', source_qm.stream_len(cfg['source_stream']))
print('target q len ', target_qm.stream_len(cfg['target_stream']))source q len  10070
target q len  230import requests as req 
# 假设是发往本机: 注意,地址是127.0.0.1
cfg1 = {'target_q_max_len': 100000,'source_read_batch_num':1,'target_write_batch_num':1,'source_redis_agent_host':'http://127.0.0.1:24021/','source_connection_hash':None,'target_redis_agent_host':'http://127.0.0.1:24021/','target_connection_hash':None,'source_stream':'.'.join(['STREAM','test','test', 'stream_in']),'target_stream':'.'.join(['STREAM','test','test', 'stream_out']),'max_exec_cnt':10}resp = req.post('http://127.0.0.1:24104/s2s/',json = cfg1 )# 返回任务号
In [9]: resp.text
Out[9]: '177e57b7-09c5-43f0-ae1f-0cbe8e41dbf5'# 流转了10条消息
In [10]: print('source q len ', source_qm.stream_len(cfg['source_stream']))...: print('target q len ', target_qm.stream_len(cfg['target_stream']))
source q len  10060
target q len  240

3 Systemd Service

由于服务是在宿主机启动的,而且是基础服务,所以使用systemd配置自启动。启动命令有点小坑,可参考 一次搞定 Linux systemd 服务脚本

本次要点就在于要用forking启动【采用sh脚本启动其他进程时Type须为forking】,因为要启动flask和celery两个服务才行。

[Unit]   
Description=test        # 简单描述服务
After=network.target    # 描述服务类别,表示本服务需要在network服务启动后在启动
Before=xxx.service      # 表示需要在某些服务启动之前启动,After和Before字段只涉及启动顺序,不涉及依赖关系[Service] 
Type=forking            # 设置服务的启动方式
User=USER               # 设置服务运行的用户
Group=USER              # 设置服务运行的用户组
WorkingDirectory=/PATH  # 设置服务运行的路径(cwd)
KillMode=control-group  # 定义systemd如何停止服务
Restart=no              # 定义服务进程退出后,systemd的重启方式,默认是不重启
ExecStart=/start.sh     # 服务启动命令,命令需要绝对路径(采用sh脚本启动其他进程时Type须为forking)[Install]   
WantedBy=multi-user.target  # 多用户

然后就好了
在这里插入图片描述

这篇关于Python 全栈系列243 S2S flask_celery的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/982442

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

python判断文件是否存在常用的几种方式

《python判断文件是否存在常用的几种方式》在Python中我们在读写文件之前,首先要做的事情就是判断文件是否存在,否则很容易发生错误的情况,:本文主要介绍python判断文件是否存在常用的几种... 目录1. 使用 os.path.exists()2. 使用 os.path.isfile()3. 使用