5 个遥遥领先的大模型 RAG 工具

2024-05-12 09:44
文章标签 工具 模型 遥遥领先 rag

本文主要是介绍5 个遥遥领先的大模型 RAG 工具,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

想象一下拥有一种超能力,让你能够对任何问题或提示生成类似人类的回答,同时还能够利用庞大的外部知识库确保准确性和相关性。这不是科幻小说,这就是检索增强生成(RAG)的力量。

在本文中,我们将介绍五大遥遥领先的 RAG 工具或库:LangChain、LlamaIndex、Haystack、RAGatouille 和 EmbedChain。

图片

LangChain

LangChain 是一个全面的开源框架,用于开发大型语言模型的应用程序。它将模块化和可扩展的架构与高级界面结合在一起,特别适用于构建检索增强生成(RAG)系统。

LangChain 允许轻松集成各种数据源,包括文档、数据库和API,这些数据源可以增强生成过程。

图片

官方:https://python.langchain.com/v0.1/docs/get_started/introduction/

主要功能

  • 文档加载器和检索器:

  • 从数据库、API和本地文件中获取相关上下文的数据。

  • 支持PDF、文本文件、网络抓取、SQL/NoSQL数据库等加载器。

  • 检索器包括 BM25、Chroma、FAISS、Elasticsearch、Pinecone等。

  • 提示工程:

  • 使用模板化结构创建动态提示。

  • 根据检索到的数据定制提示,以提供更好的上下文。

  • 内存管理:

  • 在交互中持久化上下文,实现会话式体验。

  • 与Chroma、Pinecone和FAISS等向量数据库集成。

LlamaIndex

LlamaIndex 是一个强大的库,专为构建检索增强生成(RAG)系统而设计,重点是针对大规模数据集的高效索引和检索。

利用向量相似性搜索和层次化索引等先进技术,LlamaIndex 实现了对相关信息的快速准确检索,增强了生成式语言模型的能力。

该库与流行的大型语言模型(LLMs)无缝集成,便于将检索到的数据整合到生成过程中,使其成为增强基于LLMs构建的应用程序智能和响应能力的强大工具。

图片

官方:https://docs.llamaindex.ai/en/stable/

主要功能

  • 索引类型:

  • 树形索引:使用分层结构进行高效的语义搜索,适用于涉及层次化数据的复杂查询。

  • 列表索引:对于较小的数据集,提供直接的顺序索引,允许快速的线性搜索。

  • 向量存储索引:将数据存储为密集向量,以实现快速的相似性搜索,非常适用于文档检索和推荐系统等应用。

  • 关键词表索引:使用映射表进行基于关键词的搜索,有助于根据特定术语或标签快速访问数据。

  • 文档加载器:

  • 支持从文件(TXT、PDF、DOC、CSV)、API、数据库(SQL/NoSQL)和网络抓取加载数据。

  • 检索优化:

  • 以最小的延迟高效检索相关数据。

  • 将嵌入模型(OpenAI、Hugging Face)与向量数据库的检索器(BM25、DPR、FAISS、Pinecone)相结合。

Haystack

Haystack 是由 Deepset 开发的开源NLP框架,专注于构建用于搜索和问答系统的RAG流水线。它提供了一套全面的工具和模块化的设计,允许开发灵活和可定制的RAG解决方案。

该框架包括用于文档检索、问答和生成的组件,支持各种检索方法,如Elasticsearch和FAISS。

此外,Haystack集成了诸如BERT和RoBERTa等最先进的语言模型,增强了其复杂查询任务的能力。它还具有用户友好的API和基于Web的UI,使用户可以轻松地与系统交互,并构建有效的问答和搜索应用程序。

图片

官方 :https://haystack.deepset.ai/overview/intro

主要功能

  • 文档存储:支持Elasticsearch、FAISS、SQL和InMemory存储后端。

  • 检索-阅读器流水线:

  • FARMReader:使用Transformer模型进行抽取式问答。

  • TransformersReader:通过Hugging Face模型进行抽取式问答。

  • 通过OpenAI GPT-3/4进行生成模型。

  • BM25:基于关键词的检索。

  • DensePassageRetriever:使用DPR的密集嵌入。

  • EmbeddingRetriever:通过Hugging Face模型进行自定义嵌入。

  • 检索器:

  • 阅读器:

  • 生成问答:

  • GenerativePipeline:将检索器和生成器(GPT-3/4)结合在一起。

  • HybridPipeline:混合不同的检索器/阅读器以获得最佳结果。

  • RAG流水线:

  • 评估:

  • 用于评估QA和搜索流水线的内置工具。

RAGatouille

RAGatouille 是一个轻量级框架,专门设计用于简化RAG流水线的构建,通过将预训练语言模型的力量与高效的检索技术相结合,产生高度相关和连贯的文本。

它抽象了涉及检索和生成的复杂性,专注于模块化和易用性。该框架提供了灵活且模块化的架构,允许用户尝试各种检索策略和生成模型。RAGatouille支持多种数据源,如文本文档、数据库和知识图谱,适用于多个领域和用例,是希望有效利用RAG任务的理想选择。

图片

Github:https://github.com/bclavie/RAGatouille

主要功能

  • 可插拔组件:

  • 使用基于关键词的检索(SimpleRetriever、BM25Retriever)或密集通道检索(DenseRetriever)检索数据。

  • 通过OpenAI(GPT-3/4)、Hugging Face Transformers或Anthropic Claude生成响应。

  • 提示模板:创建可定制的提示模板,以实现一致的问题理解。

  • 可扩展性:

  • 使用优化的检索有效处理大型数据集。

  • 通过Dask和Ray支持分布式处理。

EmbedChain

EmbedChain 是一个开源框架,旨在创建具有自定义知识的类似聊天机器人的应用程序,利用嵌入和大型语言模型(LLMs)。

它专注于基于嵌入的检索用于RAG,利用密集向量表示从大规模数据集中高效检索相关信息。EmbedChain提供了一个简单直观的API,便于索引和查询嵌入,使其可以轻松集成到RAG流水线中。

它支持各种嵌入模型,包括BERT和RoBERTa,并提供了相似度度量和索引策略的灵活性,增强了其根据特定需求定制应用程序的能力。

图片

Github:https://github.com/embedchain/embedchain

主要功能

  • 文档摄取:从文件(TXT、PDF、DOC、CSV)、API和网络抓取摄取数据。

  • 嵌入:

  • 利用嵌入进行高效准确的检索。

  • 支持OpenAI、BERT、RoBERTa和Sentence Transformers等嵌入模型。

  • 易于使用:

  • 简单的界面快速构建和部署RAG系统。

  • 提供了一个简单的API用于索引和查询嵌入。

结论

检索增强生成(RAG)是一种强大的技术,正在改变我们与语言模型的交互方式。通过利用生成模型和数据检索的优势,RAG 系统可以提供高度准确和上下文相关的响应。

无论是构建聊天机器人、问答系统还是内容生成平台,RAG 都有潜力将你的项目推向更高水平。

这篇关于5 个遥遥领先的大模型 RAG 工具的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/982273

相关文章

Python+wxPython开发一个文件属性比对工具

《Python+wxPython开发一个文件属性比对工具》在日常的文件管理工作中,我们经常会遇到同一个文件存在多个版本,或者需要验证备份文件与源文件是否一致,下面我们就来看看如何使用wxPython模... 目录引言项目背景与需求应用场景核心需求运行结果技术选型程序设计界面布局核心功能模块关键代码解析文件大

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

基于Go语言开发一个 IP 归属地查询接口工具

《基于Go语言开发一个IP归属地查询接口工具》在日常开发中,IP地址归属地查询是一个常见需求,本文将带大家使用Go语言快速开发一个IP归属地查询接口服务,有需要的小伙伴可以了解下... 目录功能目标技术栈项目结构核心代码(main.go)使用方法扩展功能总结在日常开发中,IP 地址归属地查询是一个常见需求:

使用python制作一款文件粉碎工具

《使用python制作一款文件粉碎工具》这篇文章主要为大家详细介绍了如何使用python制作一款文件粉碎工具,能够有效粉碎密码文件和机密Excel表格等,感兴趣的小伙伴可以了解一下... 文件粉碎工具:适用于粉碎密码文件和机密的escel表格等等,主要作用就是防止 别人用数据恢复大师把你刚删除的机密的文件恢

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

MySQL慢查询工具的使用小结

《MySQL慢查询工具的使用小结》使用MySQL的慢查询工具可以帮助开发者识别和优化性能不佳的SQL查询,本文就来介绍一下MySQL的慢查询工具,具有一定的参考价值,感兴趣的可以了解一下... 目录一、启用慢查询日志1.1 编辑mysql配置文件1.2 重启MySQL服务二、配置动态参数(可选)三、分析慢查

基于Python实现进阶版PDF合并/拆分工具

《基于Python实现进阶版PDF合并/拆分工具》在数字化时代,PDF文件已成为日常工作和学习中不可或缺的一部分,本文将详细介绍一款简单易用的PDF工具,帮助用户轻松完成PDF文件的合并与拆分操作... 目录工具概述环境准备界面说明合并PDF文件拆分PDF文件高级技巧常见问题完整源代码总结在数字化时代,PD